diff -r dc429a5b13c4 -r 1c3f1f2431f9 src/HOL/Predicate.thy --- a/src/HOL/Predicate.thy Wed Mar 19 17:06:02 2014 +0000 +++ b/src/HOL/Predicate.thy Wed Mar 19 18:47:22 2014 +0100 @@ -65,17 +65,17 @@ by (simp add: sup_pred_def) definition - "\A = Pred (INFI A eval)" + "\A = Pred (INFIMUM A eval)" lemma eval_Inf [simp]: - "eval (\A) = INFI A eval" + "eval (\A) = INFIMUM A eval" by (simp add: Inf_pred_def) definition - "\A = Pred (SUPR A eval)" + "\A = Pred (SUPREMUM A eval)" lemma eval_Sup [simp]: - "eval (\A) = SUPR A eval" + "eval (\A) = SUPREMUM A eval" by (simp add: Sup_pred_def) instance proof @@ -84,11 +84,11 @@ end lemma eval_INF [simp]: - "eval (INFI A f) = INFI A (eval \ f)" + "eval (INFIMUM A f) = INFIMUM A (eval \ f)" using eval_Inf [of "f ` A"] by simp lemma eval_SUP [simp]: - "eval (SUPR A f) = SUPR A (eval \ f)" + "eval (SUPREMUM A f) = SUPREMUM A (eval \ f)" using eval_Sup [of "f ` A"] by simp instantiation pred :: (type) complete_boolean_algebra @@ -121,10 +121,10 @@ by (simp add: single_def) definition bind :: "'a pred \ ('a \ 'b pred) \ 'b pred" (infixl "\=" 70) where - "P \= f = (SUPR {x. eval P x} f)" + "P \= f = (SUPREMUM {x. eval P x} f)" lemma eval_bind [simp]: - "eval (P \= f) = eval (SUPR {x. eval P x} f)" + "eval (P \= f) = eval (SUPREMUM {x. eval P x} f)" by (simp add: bind_def) lemma bind_bind: