diff -r 1d40d90398eb -r 1cbc24648cf7 src/HOL/Auth/Guard/Extensions.thy --- a/src/HOL/Auth/Guard/Extensions.thy Sun Dec 21 08:27:44 2003 +0100 +++ b/src/HOL/Auth/Guard/Extensions.thy Sun Dec 21 18:39:27 2003 +0100 @@ -13,25 +13,11 @@ theory Extensions = Event: -declare insert_Diff_single [simp del] - subsection{*Extensions to Theory @{text Set}*} lemma eq: "[| !!x. x:A ==> x:B; !!x. x:B ==> x:A |] ==> A=B" by auto -lemma Un_eq: "[| A=A'; B=B' |] ==> A Un B = A' Un B'" -by auto - -lemma insert_absorb_substI: "[| x:A; P (insert x A) |] ==> P A" -by (simp add: insert_absorb) - -lemma insert_Diff_substD: "[| x:A; P A |] ==> P (insert x (A - {x}))" -by (simp add: insert_Diff) - -lemma insert_Diff_substI: "[| x:A; P (insert x (A - {x})) |] ==> P A" -by (simp add: insert_Diff) - lemma insert_Un: "P ({x} Un A) ==> P (insert x A)" by simp @@ -201,11 +187,9 @@ lemmas insert_commute_substI = insert_commute [THEN ssubst] -lemma analz_insertD: "[| Crypt K Y:H; Key (invKey K):H |] -==> analz (insert Y H) = analz H" -apply (rule_tac x="Crypt K Y" and P="%H. analz (insert Y H) = analz H" -in insert_absorb_substI, simp) -by (rule_tac insert_commute_substI, simp) +lemma analz_insertD: + "[| Crypt K Y:H; Key (invKey K):H |] ==> analz (insert Y H) = analz H" +by (blast intro: analz.Decrypt analz_insert_eq) lemma must_decrypt [rule_format,dest]: "[| X:analz H; has_no_pair H |] ==> X ~:H --> (EX K Y. Crypt K Y:H & Key (invKey K):H)" @@ -367,19 +351,22 @@ consts knows' :: "agent => event list => msg set" primrec -"knows' A [] = {}" -"knows' A (ev # evs) = ( - if A = Spy then ( - case ev of - Says A' B X => insert X (knows' A evs) - | Gets A' X => knows' A evs - | Notes A' X => if A':bad then insert X (knows' A evs) else knows' A evs - ) else ( - case ev of - Says A' B X => if A=A' then insert X (knows' A evs) else knows' A evs - | Gets A' X => if A=A' then insert X (knows' A evs) else knows' A evs - | Notes A' X => if A=A' then insert X (knows' A evs) else knows' A evs - ))" +knows'_Nil: + "knows' A [] = {}" + +knows'_Cons0: + "knows' A (ev # evs) = ( + if A = Spy then ( + case ev of + Says A' B X => insert X (knows' A evs) + | Gets A' X => knows' A evs + | Notes A' X => if A':bad then insert X (knows' A evs) else knows' A evs + ) else ( + case ev of + Says A' B X => if A=A' then insert X (knows' A evs) else knows' A evs + | Gets A' X => if A=A' then insert X (knows' A evs) else knows' A evs + | Notes A' X => if A=A' then insert X (knows' A evs) else knows' A evs + ))" translations "spies" == "knows Spy" @@ -408,7 +395,10 @@ Un knows A evs" apply (simp only: knows_decomp) apply (rule_tac s="(knows' A [ev] Un knows' A evs) Un initState A" in trans) -by (rule Un_eq, rule knows'_Cons, simp, blast) +apply (simp only: knows'_Cons [of A ev evs] Un_ac) +apply blast +done + lemmas knows_Cons_substI = knows_Cons [THEN ssubst] lemmas knows_Cons_substD = knows_Cons [THEN sym, THEN ssubst]