diff -r f794e92784aa -r 1cc4ab4b7ff7 src/HOL/Library/Product_Vector.thy --- a/src/HOL/Library/Product_Vector.thy Tue May 04 09:56:34 2010 -0700 +++ b/src/HOL/Library/Product_Vector.thy Tue May 04 10:06:05 2010 -0700 @@ -312,18 +312,6 @@ (simp add: subsetD [OF `A \ B \ S`]) qed -lemma LIMSEQ_fst: "(X ----> a) \ (\n. fst (X n)) ----> fst a" -unfolding LIMSEQ_conv_tendsto by (rule tendsto_fst) - -lemma LIMSEQ_snd: "(X ----> a) \ (\n. snd (X n)) ----> snd a" -unfolding LIMSEQ_conv_tendsto by (rule tendsto_snd) - -lemma LIMSEQ_Pair: - assumes "X ----> a" and "Y ----> b" - shows "(\n. (X n, Y n)) ----> (a, b)" -using assms unfolding LIMSEQ_conv_tendsto -by (rule tendsto_Pair) - lemma LIM_fst: "f -- x --> a \ (\x. fst (f x)) -- x --> fst a" unfolding LIM_conv_tendsto by (rule tendsto_fst) @@ -374,7 +362,7 @@ using Cauchy_snd [OF `Cauchy X`] by (simp add: Cauchy_convergent_iff convergent_LIMSEQ_iff) have "X ----> (lim (\n. fst (X n)), lim (\n. snd (X n)))" - using LIMSEQ_Pair [OF 1 2] by simp + using tendsto_Pair [OF 1 2] by simp then show "convergent X" by (rule convergentI) qed