diff -r 7247cb62406c -r 1d43f86f48be src/HOL/UNITY/Comp/AllocImpl.thy --- a/src/HOL/UNITY/Comp/AllocImpl.thy Mon Dec 28 18:03:26 2015 +0100 +++ b/src/HOL/UNITY/Comp/AllocImpl.thy Mon Dec 28 19:23:15 2015 +0100 @@ -375,7 +375,7 @@ lemma alloc_refinement_lemma: "!!f::nat=>nat. (\i \ lessThan n. {s. f i \ g i s}) - \ {s. (SUM x: lessThan n. f x) \ (SUM x: lessThan n. g x s)}" + \ {s. (\x \ lessThan n. f x) \ (\x \ lessThan n. g x s)}" apply (induct_tac "n") apply (auto simp add: lessThan_Suc) done