diff -r 11aa41ed306d -r 1eced27ee0e1 doc-src/TutorialI/Advanced/document/Partial.tex --- a/doc-src/TutorialI/Advanced/document/Partial.tex Sun Aug 28 19:42:10 2005 +0200 +++ b/doc-src/TutorialI/Advanced/document/Partial.tex Sun Aug 28 19:42:19 2005 +0200 @@ -7,6 +7,7 @@ \endisadelimtheory % \isatagtheory +\isamarkupfalse% % \endisatagtheory {\isafoldtheory}% @@ -14,7 +15,6 @@ \isadelimtheory % \endisadelimtheory -\isamarkuptrue% % \begin{isamarkuptext}% \noindent Throughout this tutorial, we have emphasized @@ -41,21 +41,21 @@ non-exhaustive pattern matching: the definition of \isa{last} in \S\ref{sec:recdef-examples}. The same is allowed for \isacommand{primrec}% \end{isamarkuptext}% -\isamarkupfalse% -\isacommand{consts}\ hd\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}{\isacharprime}a\ list\ {\isasymRightarrow}\ {\isacharprime}a{\isachardoublequote}\isanewline -\isamarkupfalse% -\isacommand{primrec}\ {\isachardoublequote}hd\ {\isacharparenleft}x{\isacharhash}xs{\isacharparenright}\ {\isacharequal}\ x{\isachardoublequote}\isamarkuptrue% -% +\isamarkuptrue% +\isacommand{consts}\isamarkupfalse% +\ hd\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequoteopen}{\isacharprime}a\ list\ {\isasymRightarrow}\ {\isacharprime}a{\isachardoublequoteclose}\isanewline +\isacommand{primrec}\isamarkupfalse% +\ {\isachardoublequoteopen}hd\ {\isacharparenleft}x{\isacharhash}xs{\isacharparenright}\ {\isacharequal}\ x{\isachardoublequoteclose}% \begin{isamarkuptext}% \noindent although it generates a warning. Even ordinary definitions allow underdefinedness, this time by means of preconditions:% \end{isamarkuptext}% -\isamarkupfalse% -\isacommand{constdefs}\ minus\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}nat\ {\isasymRightarrow}\ nat\ {\isasymRightarrow}\ nat{\isachardoublequote}\isanewline -{\isachardoublequote}n\ {\isasymle}\ m\ {\isasymLongrightarrow}\ minus\ m\ n\ {\isasymequiv}\ m\ {\isacharminus}\ n{\isachardoublequote}\isamarkuptrue% -% +\isamarkuptrue% +\isacommand{constdefs}\isamarkupfalse% +\ minus\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequoteopen}nat\ {\isasymRightarrow}\ nat\ {\isasymRightarrow}\ nat{\isachardoublequoteclose}\isanewline +{\isachardoublequoteopen}n\ {\isasymle}\ m\ {\isasymLongrightarrow}\ minus\ m\ n\ {\isasymequiv}\ m\ {\isacharminus}\ n{\isachardoublequoteclose}% \begin{isamarkuptext}% The rest of this section is devoted to the question of how to define partial recursive functions by other means than non-exhaustive pattern @@ -84,13 +84,13 @@ As a simple example we define division on \isa{nat}:% \end{isamarkuptext}% -\isamarkupfalse% -\isacommand{consts}\ divi\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}nat\ {\isasymtimes}\ nat\ {\isasymRightarrow}\ nat{\isachardoublequote}\isanewline -\isamarkupfalse% -\isacommand{recdef}\ divi\ {\isachardoublequote}measure{\isacharparenleft}{\isasymlambda}{\isacharparenleft}m{\isacharcomma}n{\isacharparenright}{\isachardot}\ m{\isacharparenright}{\isachardoublequote}\isanewline -\ \ {\isachardoublequote}divi{\isacharparenleft}m{\isacharcomma}{\isadigit{0}}{\isacharparenright}\ {\isacharequal}\ arbitrary{\isachardoublequote}\isanewline -\ \ {\isachardoublequote}divi{\isacharparenleft}m{\isacharcomma}n{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}if\ m\ {\isacharless}\ n\ then\ {\isadigit{0}}\ else\ divi{\isacharparenleft}m{\isacharminus}n{\isacharcomma}n{\isacharparenright}{\isacharplus}{\isadigit{1}}{\isacharparenright}{\isachardoublequote}\isamarkuptrue% -% +\isamarkuptrue% +\isacommand{consts}\isamarkupfalse% +\ divi\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequoteopen}nat\ {\isasymtimes}\ nat\ {\isasymRightarrow}\ nat{\isachardoublequoteclose}\isanewline +\isacommand{recdef}\isamarkupfalse% +\ divi\ {\isachardoublequoteopen}measure{\isacharparenleft}{\isasymlambda}{\isacharparenleft}m{\isacharcomma}n{\isacharparenright}{\isachardot}\ m{\isacharparenright}{\isachardoublequoteclose}\isanewline +\ \ {\isachardoublequoteopen}divi{\isacharparenleft}m{\isacharcomma}{\isadigit{0}}{\isacharparenright}\ {\isacharequal}\ arbitrary{\isachardoublequoteclose}\isanewline +\ \ {\isachardoublequoteopen}divi{\isacharparenleft}m{\isacharcomma}n{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}if\ m\ {\isacharless}\ n\ then\ {\isadigit{0}}\ else\ divi{\isacharparenleft}m{\isacharminus}n{\isacharcomma}n{\isacharparenright}{\isacharplus}{\isadigit{1}}{\isacharparenright}{\isachardoublequoteclose}% \begin{isamarkuptext}% \noindent Of course we could also have defined \isa{divi\ {\isacharparenleft}m{\isacharcomma}\ {\isadigit{0}}{\isacharparenright}} to be some specific number, for example 0. The @@ -112,23 +112,23 @@ The snag is that it may not terminate if \isa{f} has non-trivial cycles. Phrased differently, the relation% \end{isamarkuptext}% -\isamarkupfalse% -\isacommand{constdefs}\ step{\isadigit{1}}\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}{\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a{\isacharparenright}\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}set{\isachardoublequote}\isanewline -\ \ {\isachardoublequote}step{\isadigit{1}}\ f\ {\isasymequiv}\ {\isacharbraceleft}{\isacharparenleft}y{\isacharcomma}x{\isacharparenright}{\isachardot}\ y\ {\isacharequal}\ f\ x\ {\isasymand}\ y\ {\isasymnoteq}\ x{\isacharbraceright}{\isachardoublequote}\isamarkuptrue% -% +\isamarkuptrue% +\isacommand{constdefs}\isamarkupfalse% +\ step{\isadigit{1}}\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequoteopen}{\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a{\isacharparenright}\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}set{\isachardoublequoteclose}\isanewline +\ \ {\isachardoublequoteopen}step{\isadigit{1}}\ f\ {\isasymequiv}\ {\isacharbraceleft}{\isacharparenleft}y{\isacharcomma}x{\isacharparenright}{\isachardot}\ y\ {\isacharequal}\ f\ x\ {\isasymand}\ y\ {\isasymnoteq}\ x{\isacharbraceright}{\isachardoublequoteclose}% \begin{isamarkuptext}% \noindent must be well-founded. Thus we make the following definition:% \end{isamarkuptext}% -\isamarkupfalse% -\isacommand{consts}\ find\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}{\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a{\isacharparenright}\ {\isasymtimes}\ {\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a{\isachardoublequote}\isanewline -\isamarkupfalse% -\isacommand{recdef}\ find\ {\isachardoublequote}same{\isacharunderscore}fst\ {\isacharparenleft}{\isasymlambda}f{\isachardot}\ wf{\isacharparenleft}step{\isadigit{1}}\ f{\isacharparenright}{\isacharparenright}\ step{\isadigit{1}}{\isachardoublequote}\isanewline -\ \ {\isachardoublequote}find{\isacharparenleft}f{\isacharcomma}x{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}if\ wf{\isacharparenleft}step{\isadigit{1}}\ f{\isacharparenright}\isanewline +\isamarkuptrue% +\isacommand{consts}\isamarkupfalse% +\ find\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequoteopen}{\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a{\isacharparenright}\ {\isasymtimes}\ {\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a{\isachardoublequoteclose}\isanewline +\isacommand{recdef}\isamarkupfalse% +\ find\ {\isachardoublequoteopen}same{\isacharunderscore}fst\ {\isacharparenleft}{\isasymlambda}f{\isachardot}\ wf{\isacharparenleft}step{\isadigit{1}}\ f{\isacharparenright}{\isacharparenright}\ step{\isadigit{1}}{\isachardoublequoteclose}\isanewline +\ \ {\isachardoublequoteopen}find{\isacharparenleft}f{\isacharcomma}x{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}if\ wf{\isacharparenleft}step{\isadigit{1}}\ f{\isacharparenright}\isanewline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ then\ if\ f\ x\ {\isacharequal}\ x\ then\ x\ else\ find{\isacharparenleft}f{\isacharcomma}\ f\ x{\isacharparenright}\isanewline -\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ else\ arbitrary{\isacharparenright}{\isachardoublequote}\isanewline -{\isacharparenleft}\isakeyword{hints}\ recdef{\isacharunderscore}simp{\isacharcolon}\ step{\isadigit{1}}{\isacharunderscore}def{\isacharparenright}\isamarkuptrue% -% +\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ else\ arbitrary{\isacharparenright}{\isachardoublequoteclose}\isanewline +{\isacharparenleft}\isakeyword{hints}\ recdef{\isacharunderscore}simp{\isacharcolon}\ step{\isadigit{1}}{\isacharunderscore}def{\isacharparenright}% \begin{isamarkuptext}% \noindent The recursion equation itself should be clear enough: it is our aborted @@ -159,56 +159,56 @@ Normally you will then derive the following conditional variant from the recursion equation:% \end{isamarkuptext}% -\isamarkupfalse% -\isacommand{lemma}\ {\isacharbrackleft}simp{\isacharbrackright}{\isacharcolon}\isanewline -\ \ {\isachardoublequote}wf{\isacharparenleft}step{\isadigit{1}}\ f{\isacharparenright}\ {\isasymLongrightarrow}\ find{\isacharparenleft}f{\isacharcomma}x{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}if\ f\ x\ {\isacharequal}\ x\ then\ x\ else\ find{\isacharparenleft}f{\isacharcomma}\ f\ x{\isacharparenright}{\isacharparenright}{\isachardoublequote}\isanewline +\isamarkuptrue% +\isacommand{lemma}\isamarkupfalse% +\ {\isacharbrackleft}simp{\isacharbrackright}{\isacharcolon}\isanewline +\ \ {\isachardoublequoteopen}wf{\isacharparenleft}step{\isadigit{1}}\ f{\isacharparenright}\ {\isasymLongrightarrow}\ find{\isacharparenleft}f{\isacharcomma}x{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}if\ f\ x\ {\isacharequal}\ x\ then\ x\ else\ find{\isacharparenleft}f{\isacharcomma}\ f\ x{\isacharparenright}{\isacharparenright}{\isachardoublequoteclose}\isanewline % \isadelimproof % \endisadelimproof % \isatagproof -\isamarkupfalse% -\isacommand{by}\ simp% +\isacommand{by}\isamarkupfalse% +\ simp% \endisatagproof {\isafoldproof}% % \isadelimproof % \endisadelimproof -\isamarkuptrue% % \begin{isamarkuptext}% \noindent Then you should disable the original recursion equation:% \end{isamarkuptext}% -\isamarkupfalse% -\isacommand{declare}\ find{\isachardot}simps{\isacharbrackleft}simp\ del{\isacharbrackright}\isamarkuptrue% -% +\isamarkuptrue% +\isacommand{declare}\isamarkupfalse% +\ find{\isachardot}simps{\isacharbrackleft}simp\ del{\isacharbrackright}% \begin{isamarkuptext}% Reasoning about such underdefined functions is like that for other recursive functions. Here is a simple example of recursion induction:% \end{isamarkuptext}% -\isamarkupfalse% -\isacommand{lemma}\ {\isachardoublequote}wf{\isacharparenleft}step{\isadigit{1}}\ f{\isacharparenright}\ {\isasymlongrightarrow}\ f{\isacharparenleft}find{\isacharparenleft}f{\isacharcomma}x{\isacharparenright}{\isacharparenright}\ {\isacharequal}\ find{\isacharparenleft}f{\isacharcomma}x{\isacharparenright}{\isachardoublequote}\isanewline +\isamarkuptrue% +\isacommand{lemma}\isamarkupfalse% +\ {\isachardoublequoteopen}wf{\isacharparenleft}step{\isadigit{1}}\ f{\isacharparenright}\ {\isasymlongrightarrow}\ f{\isacharparenleft}find{\isacharparenleft}f{\isacharcomma}x{\isacharparenright}{\isacharparenright}\ {\isacharequal}\ find{\isacharparenleft}f{\isacharcomma}x{\isacharparenright}{\isachardoublequoteclose}\isanewline % \isadelimproof % \endisadelimproof % \isatagproof -\isamarkupfalse% -\isacommand{apply}{\isacharparenleft}induct{\isacharunderscore}tac\ f\ x\ rule{\isacharcolon}\ find{\isachardot}induct{\isacharparenright}\isanewline -\isamarkupfalse% -\isacommand{apply}\ simp\isanewline -\isamarkupfalse% -\isacommand{done}% +\isacommand{apply}\isamarkupfalse% +{\isacharparenleft}induct{\isacharunderscore}tac\ f\ x\ rule{\isacharcolon}\ find{\isachardot}induct{\isacharparenright}\isanewline +\isacommand{apply}\isamarkupfalse% +\ simp\isanewline +\isacommand{done}\isamarkupfalse% +% \endisatagproof {\isafoldproof}% % \isadelimproof % \endisadelimproof -\isamarkuptrue% % \isamarkupsubsubsection{The {\tt\slshape while} Combinator% } @@ -232,11 +232,11 @@ In general, \isa{s} will be a tuple or record. As an example consider the following definition of function \isa{find}:% \end{isamarkuptext}% -\isamarkupfalse% -\isacommand{constdefs}\ find{\isadigit{2}}\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}{\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a{\isacharparenright}\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a{\isachardoublequote}\isanewline -\ \ {\isachardoublequote}find{\isadigit{2}}\ f\ x\ {\isasymequiv}\isanewline -\ \ \ fst{\isacharparenleft}while\ {\isacharparenleft}{\isasymlambda}{\isacharparenleft}x{\isacharcomma}x{\isacharprime}{\isacharparenright}{\isachardot}\ x{\isacharprime}\ {\isasymnoteq}\ x{\isacharparenright}\ {\isacharparenleft}{\isasymlambda}{\isacharparenleft}x{\isacharcomma}x{\isacharprime}{\isacharparenright}{\isachardot}\ {\isacharparenleft}x{\isacharprime}{\isacharcomma}f\ x{\isacharprime}{\isacharparenright}{\isacharparenright}\ {\isacharparenleft}x{\isacharcomma}f\ x{\isacharparenright}{\isacharparenright}{\isachardoublequote}\isamarkuptrue% -% +\isamarkuptrue% +\isacommand{constdefs}\isamarkupfalse% +\ find{\isadigit{2}}\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequoteopen}{\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a{\isacharparenright}\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a{\isachardoublequoteclose}\isanewline +\ \ {\isachardoublequoteopen}find{\isadigit{2}}\ f\ x\ {\isasymequiv}\isanewline +\ \ \ fst{\isacharparenleft}while\ {\isacharparenleft}{\isasymlambda}{\isacharparenleft}x{\isacharcomma}x{\isacharprime}{\isacharparenright}{\isachardot}\ x{\isacharprime}\ {\isasymnoteq}\ x{\isacharparenright}\ {\isacharparenleft}{\isasymlambda}{\isacharparenleft}x{\isacharcomma}x{\isacharprime}{\isacharparenright}{\isachardot}\ {\isacharparenleft}x{\isacharprime}{\isacharcomma}f\ x{\isacharprime}{\isacharparenright}{\isacharparenright}\ {\isacharparenleft}x{\isacharcomma}f\ x{\isacharparenright}{\isacharparenright}{\isachardoublequoteclose}% \begin{isamarkuptext}% \noindent The loop operates on two ``local variables'' \isa{x} and \isa{x{\isacharprime}} @@ -265,57 +265,57 @@ Only the final premise of \isa{while{\isacharunderscore}rule} is left unproved by \isa{auto} but falls to \isa{simp}:% \end{isamarkuptext}% -\isamarkupfalse% -\isacommand{lemma}\ lem{\isacharcolon}\ {\isachardoublequote}wf{\isacharparenleft}step{\isadigit{1}}\ f{\isacharparenright}\ {\isasymLongrightarrow}\isanewline +\isamarkuptrue% +\isacommand{lemma}\isamarkupfalse% +\ lem{\isacharcolon}\ {\isachardoublequoteopen}wf{\isacharparenleft}step{\isadigit{1}}\ f{\isacharparenright}\ {\isasymLongrightarrow}\isanewline \ \ {\isasymexists}y{\isachardot}\ while\ {\isacharparenleft}{\isasymlambda}{\isacharparenleft}x{\isacharcomma}x{\isacharprime}{\isacharparenright}{\isachardot}\ x{\isacharprime}\ {\isasymnoteq}\ x{\isacharparenright}\ {\isacharparenleft}{\isasymlambda}{\isacharparenleft}x{\isacharcomma}x{\isacharprime}{\isacharparenright}{\isachardot}\ {\isacharparenleft}x{\isacharprime}{\isacharcomma}f\ x{\isacharprime}{\isacharparenright}{\isacharparenright}\ {\isacharparenleft}x{\isacharcomma}f\ x{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}y{\isacharcomma}y{\isacharparenright}\ {\isasymand}\isanewline -\ \ \ \ \ \ \ f\ y\ {\isacharequal}\ y{\isachardoublequote}\isanewline +\ \ \ \ \ \ \ f\ y\ {\isacharequal}\ y{\isachardoublequoteclose}\isanewline % \isadelimproof % \endisadelimproof % \isatagproof -\isamarkupfalse% -\isacommand{apply}{\isacharparenleft}rule{\isacharunderscore}tac\ P\ {\isacharequal}\ {\isachardoublequote}{\isasymlambda}{\isacharparenleft}x{\isacharcomma}x{\isacharprime}{\isacharparenright}{\isachardot}\ x{\isacharprime}\ {\isacharequal}\ f\ x{\isachardoublequote}\ \isakeyword{and}\isanewline -\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ r\ {\isacharequal}\ {\isachardoublequote}inv{\isacharunderscore}image\ {\isacharparenleft}step{\isadigit{1}}\ f{\isacharparenright}\ fst{\isachardoublequote}\ \isakeyword{in}\ while{\isacharunderscore}rule{\isacharparenright}\isanewline -\isamarkupfalse% -\isacommand{apply}\ auto\isanewline -\isamarkupfalse% -\isacommand{apply}{\isacharparenleft}simp\ add{\isacharcolon}\ inv{\isacharunderscore}image{\isacharunderscore}def\ step{\isadigit{1}}{\isacharunderscore}def{\isacharparenright}\isanewline -\isamarkupfalse% -\isacommand{done}% +\isacommand{apply}\isamarkupfalse% +{\isacharparenleft}rule{\isacharunderscore}tac\ P\ {\isacharequal}\ {\isachardoublequoteopen}{\isasymlambda}{\isacharparenleft}x{\isacharcomma}x{\isacharprime}{\isacharparenright}{\isachardot}\ x{\isacharprime}\ {\isacharequal}\ f\ x{\isachardoublequoteclose}\ \isakeyword{and}\isanewline +\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ r\ {\isacharequal}\ {\isachardoublequoteopen}inv{\isacharunderscore}image\ {\isacharparenleft}step{\isadigit{1}}\ f{\isacharparenright}\ fst{\isachardoublequoteclose}\ \isakeyword{in}\ while{\isacharunderscore}rule{\isacharparenright}\isanewline +\isacommand{apply}\isamarkupfalse% +\ auto\isanewline +\isacommand{apply}\isamarkupfalse% +{\isacharparenleft}simp\ add{\isacharcolon}\ inv{\isacharunderscore}image{\isacharunderscore}def\ step{\isadigit{1}}{\isacharunderscore}def{\isacharparenright}\isanewline +\isacommand{done}\isamarkupfalse% +% \endisatagproof {\isafoldproof}% % \isadelimproof % \endisadelimproof -\isamarkuptrue% % \begin{isamarkuptext}% The theorem itself is a simple consequence of this lemma:% \end{isamarkuptext}% -\isamarkupfalse% -\isacommand{theorem}\ {\isachardoublequote}wf{\isacharparenleft}step{\isadigit{1}}\ f{\isacharparenright}\ {\isasymLongrightarrow}\ f{\isacharparenleft}find{\isadigit{2}}\ f\ x{\isacharparenright}\ {\isacharequal}\ find{\isadigit{2}}\ f\ x{\isachardoublequote}\isanewline +\isamarkuptrue% +\isacommand{theorem}\isamarkupfalse% +\ {\isachardoublequoteopen}wf{\isacharparenleft}step{\isadigit{1}}\ f{\isacharparenright}\ {\isasymLongrightarrow}\ f{\isacharparenleft}find{\isadigit{2}}\ f\ x{\isacharparenright}\ {\isacharequal}\ find{\isadigit{2}}\ f\ x{\isachardoublequoteclose}\isanewline % \isadelimproof % \endisadelimproof % \isatagproof -\isamarkupfalse% -\isacommand{apply}{\isacharparenleft}drule{\isacharunderscore}tac\ x\ {\isacharequal}\ x\ \isakeyword{in}\ lem{\isacharparenright}\isanewline -\isamarkupfalse% -\isacommand{apply}{\isacharparenleft}auto\ simp\ add{\isacharcolon}\ find{\isadigit{2}}{\isacharunderscore}def{\isacharparenright}\isanewline -\isamarkupfalse% -\isacommand{done}% +\isacommand{apply}\isamarkupfalse% +{\isacharparenleft}drule{\isacharunderscore}tac\ x\ {\isacharequal}\ x\ \isakeyword{in}\ lem{\isacharparenright}\isanewline +\isacommand{apply}\isamarkupfalse% +{\isacharparenleft}auto\ simp\ add{\isacharcolon}\ find{\isadigit{2}}{\isacharunderscore}def{\isacharparenright}\isanewline +\isacommand{done}\isamarkupfalse% +% \endisatagproof {\isafoldproof}% % \isadelimproof % \endisadelimproof -\isamarkuptrue% % \begin{isamarkuptext}% Let us conclude this section on partial functions by a @@ -332,12 +332,14 @@ Thus, if you are aiming for an efficiently executable definition of a partial function, you are likely to need \isa{while}.% \end{isamarkuptext}% +\isamarkuptrue% % \isadelimtheory % \endisadelimtheory % \isatagtheory +\isamarkupfalse% % \endisatagtheory {\isafoldtheory}%