diff -r 11aa41ed306d -r 1eced27ee0e1 doc-src/TutorialI/Recdef/document/Induction.tex --- a/doc-src/TutorialI/Recdef/document/Induction.tex Sun Aug 28 19:42:10 2005 +0200 +++ b/doc-src/TutorialI/Recdef/document/Induction.tex Sun Aug 28 19:42:19 2005 +0200 @@ -7,6 +7,7 @@ \endisadelimtheory % \isatagtheory +\isamarkupfalse% % \endisatagtheory {\isafoldtheory}% @@ -14,7 +15,6 @@ \isadelimtheory % \endisadelimtheory -\isamarkuptrue% % \begin{isamarkuptext}% Assuming we have defined our function such that Isabelle could prove @@ -32,14 +32,14 @@ for all recursive calls on the right-hand side. Here is a simple example involving the predefined \isa{map} functional on lists:% \end{isamarkuptext}% -\isamarkupfalse% -\isacommand{lemma}\ {\isachardoublequote}map\ f\ {\isacharparenleft}sep{\isacharparenleft}x{\isacharcomma}xs{\isacharparenright}{\isacharparenright}\ {\isacharequal}\ sep{\isacharparenleft}f\ x{\isacharcomma}\ map\ f\ xs{\isacharparenright}{\isachardoublequote}% +\isamarkuptrue% +\isacommand{lemma}\isamarkupfalse% +\ {\isachardoublequoteopen}map\ f\ {\isacharparenleft}sep{\isacharparenleft}x{\isacharcomma}xs{\isacharparenright}{\isacharparenright}\ {\isacharequal}\ sep{\isacharparenleft}f\ x{\isacharcomma}\ map\ f\ xs{\isacharparenright}{\isachardoublequoteclose}% \isadelimproof % \endisadelimproof % \isatagproof -\isamarkuptrue% % \begin{isamarkuptxt}% \noindent @@ -47,9 +47,9 @@ is the result of applying \isa{f} to all elements of \isa{xs}. We prove this lemma by recursion induction over \isa{sep}:% \end{isamarkuptxt}% -\isamarkupfalse% -\isacommand{apply}{\isacharparenleft}induct{\isacharunderscore}tac\ x\ xs\ rule{\isacharcolon}\ sep{\isachardot}induct{\isacharparenright}\isamarkuptrue% -% +\isamarkuptrue% +\isacommand{apply}\isamarkupfalse% +{\isacharparenleft}induct{\isacharunderscore}tac\ x\ xs\ rule{\isacharcolon}\ sep{\isachardot}induct{\isacharparenright}% \begin{isamarkuptxt}% \noindent The resulting proof state has three subgoals corresponding to the three @@ -63,17 +63,17 @@ \end{isabelle} The rest is pure simplification:% \end{isamarkuptxt}% -\isamarkupfalse% -\isacommand{apply}\ simp{\isacharunderscore}all\isanewline -\isamarkupfalse% -\isacommand{done}% +\isamarkuptrue% +\isacommand{apply}\isamarkupfalse% +\ simp{\isacharunderscore}all\isanewline +\isacommand{done}\isamarkupfalse% +% \endisatagproof {\isafoldproof}% % \isadelimproof % \endisadelimproof -\isamarkuptrue% % \begin{isamarkuptext}% Try proving the above lemma by structural induction, and you find that you @@ -101,12 +101,14 @@ The final case has an induction hypothesis: you may assume that \isa{P} holds for the tail of that list.% \end{isamarkuptext}% +\isamarkuptrue% % \isadelimtheory % \endisadelimtheory % \isatagtheory +\isamarkupfalse% % \endisatagtheory {\isafoldtheory}%