diff -r 2f5edb146f7e -r 1f073030b97a doc-src/TutorialI/Advanced/Partial.thy --- a/doc-src/TutorialI/Advanced/Partial.thy Fri Jan 18 17:46:17 2002 +0100 +++ b/doc-src/TutorialI/Advanced/Partial.thy Fri Jan 18 18:30:19 2002 +0100 @@ -138,7 +138,7 @@ *} lemma "wf(step1 f) \ f(find(f,x)) = find(f,x)" -apply(induct_tac f x rule:find.induct); +apply(induct_tac f x rule: find.induct); apply simp done @@ -193,7 +193,7 @@ apply(rule_tac P = "\(x,x'). x' = f x" and r = "inv_image (step1 f) fst" in while_rule); apply auto -apply(simp add:inv_image_def step1_def) +apply(simp add: inv_image_def step1_def) done text{* @@ -202,7 +202,7 @@ theorem "wf(step1 f) \ f(find2 f x) = find2 f x" apply(drule_tac x = x in lem) -apply(auto simp add:find2_def) +apply(auto simp add: find2_def) done text{* Let us conclude this section on partial functions by a