diff -r 2f5edb146f7e -r 1f073030b97a doc-src/TutorialI/Recdef/Nested2.thy --- a/doc-src/TutorialI/Recdef/Nested2.thy Fri Jan 18 17:46:17 2002 +0100 +++ b/doc-src/TutorialI/Recdef/Nested2.thy Fri Jan 18 18:30:19 2002 +0100 @@ -19,13 +19,13 @@ *} lemma "trev(trev t) = t" -apply(induct_tac t rule:trev.induct) +apply(induct_tac t rule: trev.induct) txt{* @{subgoals[display,indent=0]} Both the base case and the induction step fall to simplification: *} -by(simp_all add:rev_map sym[OF map_compose] cong:map_cong) +by(simp_all add: rev_map sym[OF map_compose] cong: map_cong) text{*\noindent If the proof of the induction step mystifies you, we recommend that you go through