diff -r 414a68d72279 -r 1fa4725c4656 src/HOL/Old_Number_Theory/Gauss.thy --- a/src/HOL/Old_Number_Theory/Gauss.thy Thu Jan 13 21:50:13 2011 +0100 +++ b/src/HOL/Old_Number_Theory/Gauss.thy Thu Jan 13 23:50:16 2011 +0100 @@ -79,10 +79,10 @@ by (auto simp add: C_def finite_B) lemma finite_D: "finite (D)" -by (auto simp add: D_def finite_Int finite_C) +by (auto simp add: D_def finite_C) lemma finite_E: "finite (E)" -by (auto simp add: E_def finite_Int finite_C) +by (auto simp add: E_def finite_C) lemma finite_F: "finite (F)" by (auto simp add: F_def finite_E) @@ -125,11 +125,11 @@ with zcong_less_eq [of x y p] p_minus_one_l order_le_less_trans [of x "(p - 1) div 2" p] order_le_less_trans [of y "(p - 1) div 2" p] show "x = y" - by (simp add: prems p_minus_one_l p_g_0) + by (simp add: b c d e p_minus_one_l p_g_0) qed lemma SR_B_inj: "inj_on (StandardRes p) B" - apply (auto simp add: B_def StandardRes_def inj_on_def A_def prems) + apply (auto simp add: B_def StandardRes_def inj_on_def A_def) proof - fix x fix y assume a: "x * a mod p = y * a mod p" @@ -146,7 +146,7 @@ with zcong_less_eq [of x y p] p_minus_one_l order_le_less_trans [of x "(p - 1) div 2" p] order_le_less_trans [of y "(p - 1) div 2" p] have "x = y" - by (simp add: prems p_minus_one_l p_g_0) + by (simp add: b c d e p_minus_one_l p_g_0) then have False by (simp add: f) then show "a = 0"