diff -r f30b73385060 -r 25b068a99d2b src/HOL/NumberTheory/Gauss.thy --- a/src/HOL/NumberTheory/Gauss.thy Wed Jul 26 13:31:07 2006 +0200 +++ b/src/HOL/NumberTheory/Gauss.thy Wed Jul 26 19:23:04 2006 +0200 @@ -104,8 +104,6 @@ apply (auto simp add: A_def ResSet_def) apply (rule_tac m = p in zcong_less_eq) apply (insert p_g_2, auto) - apply (subgoal_tac [1-2] "(p - 1) div 2 < p") - apply (auto, auto simp add: p_minus_one_l) done lemma (in GAUSS) B_res: "ResSet p B" @@ -255,6 +253,8 @@ lemma (in GAUSS) D_leq: "x \ D ==> x \ (p - 1) div 2" by (auto simp add: D_eq) +ML {* fast_arith_split_limit := 0; *} (*FIXME*) + lemma (in GAUSS) F_ge: "x \ F ==> x \ (p - 1) div 2" apply (auto simp add: F_eq A_def) proof - @@ -270,6 +270,8 @@ using zless_add1_eq [of "p - StandardRes p (y * a)" "(p - 1) div 2"] by auto qed +ML {* fast_arith_split_limit := 9; *} (*FIXME*) + lemma (in GAUSS) all_A_relprime: "\x \ A. zgcd(x, p) = 1" using p_prime p_minus_one_l by (auto simp add: A_def zless_zprime_imp_zrelprime)