diff -r b07ae33cc459 -r 202a09ba37d8 src/HOL/Matrix/Matrix.thy --- a/src/HOL/Matrix/Matrix.thy Mon Feb 27 10:56:36 2012 +0100 +++ b/src/HOL/Matrix/Matrix.thy Mon Feb 27 11:38:56 2012 +0100 @@ -849,7 +849,7 @@ "singleton_matrix j i a == Abs_matrix(% m n. if j = m & i = n then a else 0)" definition move_matrix :: "('a::zero) matrix \ int \ int \ 'a matrix" where - "move_matrix A y x == Abs_matrix(% j i. if (neg ((int j)-y)) | (neg ((int i)-x)) then 0 else Rep_matrix A (nat ((int j)-y)) (nat ((int i)-x)))" + "move_matrix A y x == Abs_matrix(% j i. if (((int j)-y) < 0) | (((int i)-x) < 0) then 0 else Rep_matrix A (nat ((int j)-y)) (nat ((int i)-x)))" definition take_rows :: "('a::zero) matrix \ nat \ 'a matrix" where "take_rows A r == Abs_matrix(% j i. if (j < r) then (Rep_matrix A j i) else 0)" @@ -930,7 +930,7 @@ lemma Rep_move_matrix[simp]: "Rep_matrix (move_matrix A y x) j i = - (if (neg ((int j)-y)) | (neg ((int i)-x)) then 0 else Rep_matrix A (nat((int j)-y)) (nat((int i)-x)))" + (if (((int j)-y) < 0) | (((int i)-x) < 0) then 0 else Rep_matrix A (nat((int j)-y)) (nat((int i)-x)))" apply (simp add: move_matrix_def) apply (auto) by (subst RepAbs_matrix, @@ -959,8 +959,8 @@ apply (case_tac "j + int u < 0") apply (simp, arith) apply (case_tac "i + int v < 0") - apply (simp add: neg_def, arith) - apply (simp add: neg_def) + apply (simp, arith) + apply simp apply arith done @@ -1016,7 +1016,6 @@ apply (subst foldseq_almostzero[of _ j]) apply (simp add: assms)+ apply (auto) - apply (metis add_0 le_antisym le_diff_eq not_neg_nat zero_le_imp_of_nat zle_int) done lemma mult_matrix_ext: @@ -1440,19 +1439,19 @@ done lemma move_matrix_le_zero[simp]: "0 <= j \ 0 <= i \ (move_matrix A j i <= 0) = (A <= (0::('a::{order,zero}) matrix))" - apply (auto simp add: le_matrix_def neg_def) + apply (auto simp add: le_matrix_def) apply (drule_tac j="ja+(nat j)" and i="ia+(nat i)" in spec2) apply (auto) done lemma move_matrix_zero_le[simp]: "0 <= j \ 0 <= i \ (0 <= move_matrix A j i) = ((0::('a::{order,zero}) matrix) <= A)" - apply (auto simp add: le_matrix_def neg_def) + apply (auto simp add: le_matrix_def) apply (drule_tac j="ja+(nat j)" and i="ia+(nat i)" in spec2) apply (auto) done lemma move_matrix_le_move_matrix_iff[simp]: "0 <= j \ 0 <= i \ (move_matrix A j i <= move_matrix B j i) = (A <= (B::('a::{order,zero}) matrix))" - apply (auto simp add: le_matrix_def neg_def) + apply (auto simp add: le_matrix_def) apply (drule_tac j="ja+(nat j)" and i="ia+(nat i)" in spec2) apply (auto) done