diff -r 9dcce140bdfc -r 2054fa3c8d76 src/ZF/Sum.ML --- a/src/ZF/Sum.ML Fri Nov 25 00:00:35 1994 +0100 +++ b/src/ZF/Sum.ML Fri Nov 25 00:01:04 1994 +0100 @@ -1,4 +1,4 @@ -(* Title: ZF/sum +(* Title: ZF/Sum ID: $Id$ Author: Lawrence C Paulson, Cambridge University Computer Laboratory Copyright 1992 University of Cambridge @@ -8,6 +8,35 @@ open Sum; +(*** Rules for the Part primitive ***) + +goalw Sum.thy [Part_def] + "a : Part(A,h) <-> a:A & (EX y. a=h(y))"; +by (rtac separation 1); +val Part_iff = result(); + +goalw Sum.thy [Part_def] + "!!a b A h. [| a : A; a=h(b) |] ==> a : Part(A,h)"; +by (REPEAT (ares_tac [exI,CollectI] 1)); +val Part_eqI = result(); + +val PartI = refl RSN (2,Part_eqI); + +val major::prems = goalw Sum.thy [Part_def] + "[| a : Part(A,h); !!z. [| a : A; a=h(z) |] ==> P \ +\ |] ==> P"; +by (rtac (major RS CollectE) 1); +by (etac exE 1); +by (REPEAT (ares_tac prems 1)); +val PartE = result(); + +goalw Sum.thy [Part_def] "Part(A,h) <= A"; +by (rtac Collect_subset 1); +val Part_subset = result(); + + +(*** Rules for Disjoint Sums ***) + val sum_defs = [sum_def,Inl_def,Inr_def,case_def]; goalw Sum.thy (bool_def::sum_defs) "Sigma(bool,C) = C(0) + C(1)"; @@ -61,8 +90,9 @@ val Inl_neq_Inr = standard (Inl_Inr_iff RS iffD1 RS FalseE); val Inr_neq_Inl = standard (Inr_Inl_iff RS iffD1 RS FalseE); -val sum_cs = ZF_cs addSIs [InlI,InrI] addSEs [sumE,Inl_neq_Inr,Inr_neq_Inl] - addSDs [Inl_inject,Inr_inject]; +val sum_cs = ZF_cs addSIs [PartI, InlI, InrI] + addSEs [PartE, sumE, Inl_neq_Inr, Inr_neq_Inl] + addSDs [Inl_inject, Inr_inject]; val sum_ss = ZF_ss addsimps [InlI, InrI, Inl_iff, Inr_iff, Inl_Inr_iff, Inr_Inl_iff]; @@ -125,37 +155,23 @@ val expand_case = result(); -(** Rules for the Part primitive **) - -goalw Sum.thy [Part_def] - "!!a b A h. [| a : A; a=h(b) |] ==> a : Part(A,h)"; -by (REPEAT (ares_tac [exI,CollectI] 1)); -val Part_eqI = result(); - -val PartI = refl RSN (2,Part_eqI); - -val major::prems = goalw Sum.thy [Part_def] - "[| a : Part(A,h); !!z. [| a : A; a=h(z) |] ==> P \ -\ |] ==> P"; -by (rtac (major RS CollectE) 1); -by (etac exE 1); -by (REPEAT (ares_tac prems 1)); -val PartE = result(); - -goalw Sum.thy [Part_def] "Part(A,h) <= A"; -by (rtac Collect_subset 1); -val Part_subset = result(); - goal Sum.thy "!!A B h. A<=B ==> Part(A,h)<=Part(B,h)"; -by (fast_tac (ZF_cs addIs [PartI] addSEs [PartE]) 1); +by (fast_tac sum_cs 1); val Part_mono = result(); +goal Sum.thy "Part(Collect(A,P), h) = Collect(Part(A,h), P)"; +by (fast_tac (sum_cs addSIs [equalityI]) 1); +val Part_Collect = result(); + +val Part_CollectE = + Part_Collect RS equalityD1 RS subsetD RS CollectE |> standard; + goal Sum.thy "Part(A+B,Inl) = {Inl(x). x: A}"; -by (fast_tac (sum_cs addIs [PartI,equalityI] addSEs [PartE]) 1); +by (fast_tac (sum_cs addIs [equalityI]) 1); val Part_Inl = result(); goal Sum.thy "Part(A+B,Inr) = {Inr(y). y: B}"; -by (fast_tac (sum_cs addIs [PartI,equalityI] addSEs [PartE]) 1); +by (fast_tac (sum_cs addIs [equalityI]) 1); val Part_Inr = result(); goalw Sum.thy [Part_def] "!!a. a : Part(A,h) ==> a : A"; @@ -163,17 +179,13 @@ val PartD1 = result(); goal Sum.thy "Part(A,%x.x) = A"; -by (fast_tac (ZF_cs addIs [PartI,equalityI] addSEs [PartE]) 1); +by (fast_tac (sum_cs addIs [equalityI]) 1); val Part_id = result(); goal Sum.thy "Part(A+B, %x.Inr(h(x))) = {Inr(y). y: Part(B,h)}"; -by (fast_tac (sum_cs addIs [PartI,equalityI] addSEs [PartE]) 1); +by (fast_tac (sum_cs addIs [equalityI]) 1); val Part_Inr2 = result(); goal Sum.thy "!!A B C. C <= A+B ==> Part(C,Inl) Un Part(C,Inr) = C"; -by (rtac equalityI 1); -by (rtac Un_least 1); -by (rtac Part_subset 1); -by (rtac Part_subset 1); -by (fast_tac (ZF_cs addIs [PartI] addSEs [sumE]) 1); +by (fast_tac (sum_cs addIs [equalityI]) 1); val Part_sum_equality = result();