diff -r 18e94864fd0f -r 2082287357e6 src/HOL/Library/Boolean_Algebra.thy --- a/src/HOL/Library/Boolean_Algebra.thy Sat Apr 20 18:02:20 2019 +0000 +++ b/src/HOL/Library/Boolean_Algebra.thy Sat Apr 20 18:02:21 2019 +0000 @@ -191,15 +191,11 @@ lemma de_Morgan_disj [simp]: "\ (x \ y) = \ x \ \ y" by (rule boolean_algebra.de_Morgan_conj [OF dual]) -end - subsection \Symmetric Difference\ -locale boolean_algebra_xor = boolean_algebra + - fixes xor :: "'a \ 'a \ 'a" (infixr "\" 65) - assumes xor_def: "x \ y = (x \ \ y) \ (\ x \ y)" -begin +definition xor :: "'a \ 'a \ 'a" (infixr "\" 65) + where "x \ y = (x \ \ y) \ (\ x \ y)" sublocale xor: abel_semigroup xor proof