diff -r dd58f13a8eb4 -r eb85850d3eb7 src/HOL/Complex/CLim.thy --- a/src/HOL/Complex/CLim.thy Fri Nov 17 02:19:55 2006 +0100 +++ b/src/HOL/Complex/CLim.thy Fri Nov 17 02:20:03 2006 +0100 @@ -34,43 +34,50 @@ done abbreviation - CLIM :: "[complex=>complex,complex,complex] => bool" - ("((_)/ -- (_)/ --C> (_))" [60, 0, 60] 60) + ("((_)/ -- (_)/ --C> (_))" [60, 0, 60] 60) where "CLIM == LIM" +abbreviation NSCLIM :: "[complex=>complex,complex,complex] => bool" - ("((_)/ -- (_)/ --NSC> (_))" [60, 0, 60] 60) + ("((_)/ -- (_)/ --NSC> (_))" [60, 0, 60] 60) where "NSCLIM == NSLIM" +abbreviation (* f: C --> R *) CRLIM :: "[complex=>real,complex,real] => bool" - ("((_)/ -- (_)/ --CR> (_))" [60, 0, 60] 60) + ("((_)/ -- (_)/ --CR> (_))" [60, 0, 60] 60) where "CRLIM == LIM" +abbreviation NSCRLIM :: "[complex=>real,complex,real] => bool" - ("((_)/ -- (_)/ --NSCR> (_))" [60, 0, 60] 60) + ("((_)/ -- (_)/ --NSCR> (_))" [60, 0, 60] 60) where "NSCRLIM == NSLIM" - - isContc :: "[complex=>complex,complex] => bool" +abbreviation + isContc :: "[complex=>complex,complex] => bool" where "isContc == isCont" +abbreviation (* NS definition dispenses with limit notions *) - isNSContc :: "[complex=>complex,complex] => bool" + isNSContc :: "[complex=>complex,complex] => bool" where "isNSContc == isNSCont" - isContCR :: "[complex=>real,complex] => bool" +abbreviation + isContCR :: "[complex=>real,complex] => bool" where "isContCR == isCont" +abbreviation (* NS definition dispenses with limit notions *) - isNSContCR :: "[complex=>real,complex] => bool" + isNSContCR :: "[complex=>real,complex] => bool" where "isNSContCR == isNSCont" - isUContc :: "(complex=>complex) => bool" +abbreviation + isUContc :: "(complex=>complex) => bool" where "isUContc == isUCont" - isNSUContc :: "(complex=>complex) => bool" +abbreviation + isNSUContc :: "(complex=>complex) => bool" where "isNSUContc == isNSUCont" @@ -129,25 +136,27 @@ by (rule isNSUCont_def) + (* differentiation: D is derivative of function f at x *) definition - - (* differentiation: D is derivative of function f at x *) cderiv:: "[complex=>complex,complex,complex] => bool" - ("(CDERIV (_)/ (_)/ :> (_))" [60, 0, 60] 60) + ("(CDERIV (_)/ (_)/ :> (_))" [60, 0, 60] 60) where "CDERIV f x :> D = ((%h. (f(x + h) - f(x))/h) -- 0 --C> D)" +definition nscderiv :: "[complex=>complex,complex,complex] => bool" - ("(NSCDERIV (_)/ (_)/ :> (_))" [60, 0, 60] 60) + ("(NSCDERIV (_)/ (_)/ :> (_))" [60, 0, 60] 60) where "NSCDERIV f x :> D = (\h \ Infinitesimal - {0}. (( *f* f)(hcomplex_of_complex x + h) - hcomplex_of_complex (f x))/h @= hcomplex_of_complex D)" +definition cdifferentiable :: "[complex=>complex,complex] => bool" - (infixl "cdifferentiable" 60) + (infixl "cdifferentiable" 60) where "f cdifferentiable x = (\D. CDERIV f x :> D)" +definition NSCdifferentiable :: "[complex=>complex,complex] => bool" - (infixl "NSCdifferentiable" 60) + (infixl "NSCdifferentiable" 60) where "f NSCdifferentiable x = (\D. NSCDERIV f x :> D)"