diff -r dd58f13a8eb4 -r eb85850d3eb7 src/HOL/Library/Continuity.thy --- a/src/HOL/Library/Continuity.thy Fri Nov 17 02:19:55 2006 +0100 +++ b/src/HOL/Library/Continuity.thy Fri Nov 17 02:20:03 2006 +0100 @@ -18,8 +18,8 @@ "continuous F == !M. chain M \ F(SUP i. M i) = (SUP i. F(M i))" abbreviation - bot :: "'a::order" -"bot == Sup {}" + bot :: "'a::order" where + "bot == Sup {}" lemma SUP_nat_conv: "(SUP n::nat. M n::'a::comp_lat) = join (M 0) (SUP n. M(Suc n))" @@ -91,7 +91,7 @@ subsection "Chains" definition - up_chain :: "(nat => 'a set) => bool" + up_chain :: "(nat => 'a set) => bool" where "up_chain F = (\i. F i \ F (Suc i))" lemma up_chainI: "(!!i. F i \ F (Suc i)) ==> up_chain F" @@ -113,7 +113,7 @@ definition - down_chain :: "(nat => 'a set) => bool" + down_chain :: "(nat => 'a set) => bool" where "down_chain F = (\i. F (Suc i) \ F i)" lemma down_chainI: "(!!i. F (Suc i) \ F i) ==> down_chain F" @@ -137,7 +137,7 @@ subsection "Continuity" definition - up_cont :: "('a set => 'a set) => bool" + up_cont :: "('a set => 'a set) => bool" where "up_cont f = (\F. up_chain F --> f (\(range F)) = \(f ` range F))" lemma up_contI: @@ -164,7 +164,7 @@ definition - down_cont :: "('a set => 'a set) => bool" + down_cont :: "('a set => 'a set) => bool" where "down_cont f = (\F. down_chain F --> f (Inter (range F)) = Inter (f ` range F))" @@ -194,7 +194,7 @@ subsection "Iteration" definition - up_iterate :: "('a set => 'a set) => nat => 'a set" + up_iterate :: "('a set => 'a set) => nat => 'a set" where "up_iterate f n = (f^n) {}" lemma up_iterate_0 [simp]: "up_iterate f 0 = {}" @@ -246,7 +246,7 @@ definition - down_iterate :: "('a set => 'a set) => nat => 'a set" + down_iterate :: "('a set => 'a set) => nat => 'a set" where "down_iterate f n = (f^n) UNIV" lemma down_iterate_0 [simp]: "down_iterate f 0 = UNIV"