diff -r dd58f13a8eb4 -r eb85850d3eb7 src/HOL/NumberTheory/IntPrimes.thy --- a/src/HOL/NumberTheory/IntPrimes.thy Fri Nov 17 02:19:55 2006 +0100 +++ b/src/HOL/NumberTheory/IntPrimes.thy Fri Nov 17 02:20:03 2006 +0100 @@ -32,16 +32,19 @@ t, t' - (r' div r) * t))" definition - zgcd :: "int * int => int" + zgcd :: "int * int => int" where "zgcd = (\(x,y). int (gcd (nat (abs x), nat (abs y))))" - zprime :: "int \ bool" +definition + zprime :: "int \ bool" where "zprime p = (1 < p \ (\m. 0 <= m & m dvd p --> m = 1 \ m = p))" - xzgcd :: "int => int => int * int * int" +definition + xzgcd :: "int => int => int * int * int" where "xzgcd m n = xzgcda (m, n, m, n, 1, 0, 0, 1)" - zcong :: "int => int => int => bool" ("(1[_ = _] '(mod _'))") +definition + zcong :: "int => int => int => bool" ("(1[_ = _] '(mod _'))") where "[a = b] (mod m) = (m dvd (a - b))"