diff -r dd58f13a8eb4 -r eb85850d3eb7 src/HOL/ex/Abstract_NAT.thy --- a/src/HOL/ex/Abstract_NAT.thy Fri Nov 17 02:19:55 2006 +0100 +++ b/src/HOL/ex/Abstract_NAT.thy Fri Nov 17 02:20:03 2006 +0100 @@ -66,7 +66,7 @@ text {* \medskip The recursion operator -- polymorphic! *} definition - rec :: "'a \ ('n \ 'a \ 'a) \ 'n \ 'a" + rec :: "'a \ ('n \ 'a \ 'a) \ 'n \ 'a" where "rec e r x = (THE y. Rec e r x y)" lemma rec_eval: @@ -92,7 +92,7 @@ text {* \medskip Example: addition (monomorphic) *} definition - add :: "'n \ 'n \ 'n" + add :: "'n \ 'n \ 'n" where "add m n = rec n (\_ k. succ k) m" lemma add_zero [simp]: "add zero n = n" @@ -116,7 +116,7 @@ text {* \medskip Example: replication (polymorphic) *} definition - repl :: "'n \ 'a \ 'a list" + repl :: "'n \ 'a \ 'a list" where "repl n x = rec [] (\_ xs. x # xs) n" lemma repl_zero [simp]: "repl zero x = []"