diff -r dd58f13a8eb4 -r eb85850d3eb7 src/HOL/ex/Higher_Order_Logic.thy --- a/src/HOL/ex/Higher_Order_Logic.thy Fri Nov 17 02:19:55 2006 +0100 +++ b/src/HOL/ex/Higher_Order_Logic.thy Fri Nov 17 02:20:03 2006 +0100 @@ -80,21 +80,31 @@ subsubsection {* Derived connectives *} definition - false :: o ("\") + false :: o ("\") where "\ \ \A. A" - true :: o ("\") + +definition + true :: o ("\") where "\ \ \ \ \" - not :: "o \ o" ("\ _" [40] 40) + +definition + not :: "o \ o" ("\ _" [40] 40) where "not \ \A. A \ \" - conj :: "o \ o \ o" (infixr "\" 35) + +definition + conj :: "o \ o \ o" (infixr "\" 35) where "conj \ \A B. \C. (A \ B \ C) \ C" - disj :: "o \ o \ o" (infixr "\" 30) + +definition + disj :: "o \ o \ o" (infixr "\" 30) where "disj \ \A B. \C. (A \ C) \ (B \ C) \ C" - Ex :: "('a \ o) \ o" (binder "\" 10) + +definition + Ex :: "('a \ o) \ o" (binder "\" 10) where "Ex \ \P. \C. (\x. P x \ C) \ C" abbreviation - not_equal :: "'a \ 'a \ o" (infixl "\" 50) + not_equal :: "'a \ 'a \ o" (infixl "\" 50) where "x \ y \ \ (x = y)" theorem falseE [elim]: "\ \ A"