diff -r dd58f13a8eb4 -r eb85850d3eb7 src/HOL/ex/InductiveInvariant.thy --- a/src/HOL/ex/InductiveInvariant.thy Fri Nov 17 02:19:55 2006 +0100 +++ b/src/HOL/ex/InductiveInvariant.thy Fri Nov 17 02:20:03 2006 +0100 @@ -15,14 +15,14 @@ text "S is an inductive invariant of the functional F with respect to the wellfounded relation r." definition - indinv :: "('a * 'a) set => ('a => 'b => bool) => (('a => 'b) => ('a => 'b)) => bool" + indinv :: "('a * 'a) set => ('a => 'b => bool) => (('a => 'b) => ('a => 'b)) => bool" where "indinv r S F = (\f x. (\y. (y,x) : r --> S y (f y)) --> S x (F f x))" text "S is an inductive invariant of the functional F on set D with respect to the wellfounded relation r." definition - indinv_on :: "('a * 'a) set => 'a set => ('a => 'b => bool) => (('a => 'b) => ('a => 'b)) => bool" + indinv_on :: "('a * 'a) set => 'a set => ('a => 'b => bool) => (('a => 'b) => ('a => 'b)) => bool" where "indinv_on r D S F = (\f. \x\D. (\y\D. (y,x) \ r --> S y (f y)) --> S x (F f x))"