diff -r 96699d8eb49e -r 21bbd410ba04 src/HOL/Algebra/Lattice.thy --- a/src/HOL/Algebra/Lattice.thy Fri Aug 01 17:41:37 2008 +0200 +++ b/src/HOL/Algebra/Lattice.thy Fri Aug 01 18:10:52 2008 +0200 @@ -4,7 +4,7 @@ Author: Clemens Ballarin, started 7 November 2003 Copyright: Clemens Ballarin -Most congruence rules by Stefan Hohe. +Most congruence rules by Stephan Hohe. *) theory Lattice imports Congruence begin @@ -964,7 +964,7 @@ qed -subsection {* Complete lattices *} +subsection {* Complete Lattices *} locale weak_complete_lattice = weak_lattice + assumes sup_exists: @@ -1115,12 +1115,7 @@ end -subsubsection {* Upper and lower bounds of a set *} - -(* all relevant lemmas are global and already proved above *) - - -subsubsection {* Least and greatest, as predicate *} +text {* Least and greatest, as predicate *} lemma (in partial_order) least_unique: "[| least L x A; least L y A |] ==> x = y" @@ -1131,7 +1126,7 @@ using weak_greatest_unique unfolding eq_is_equal . -subsection {* Lattices *} +text {* Lattices *} locale upper_semilattice = partial_order + assumes sup_of_two_exists: @@ -1150,7 +1145,7 @@ locale lattice = upper_semilattice + lower_semilattice -subsubsection {* Supremum *} +text {* Supremum *} declare (in partial_order) weak_sup_of_singleton [simp del] @@ -1169,7 +1164,7 @@ using weak_join_assoc L unfolding eq_is_equal . -subsubsection {* Infimum *} +text {* Infimum *} declare (in partial_order) weak_inf_of_singleton [simp del] @@ -1190,7 +1185,7 @@ using weak_meet_assoc L unfolding eq_is_equal . -subsection {* Total Orders *} +text {* Total Orders *} locale total_order = partial_order + assumes total: "[| x \ carrier L; y \ carrier L |] ==> x \ y | y \ x" @@ -1211,7 +1206,7 @@ by unfold_locales (auto intro: sup_of_two_exists inf_of_two_exists) -subsection {* Complete lattices *} +text {* Complete lattices *} locale complete_lattice = lattice + assumes sup_exists: @@ -1280,7 +1275,7 @@ subsection {* Examples *} -subsubsection {* Powerset of a Set is a Complete Lattice *} +subsubsection {* The Powerset of a Set is a Complete Lattice *} theorem powerset_is_complete_lattice: "complete_lattice (| carrier = Pow A, eq = op =, le = op \ |)"