diff -r da97167e03f7 -r 222fb6cb2c3e src/HOL/Library/Code_Abstract_Nat.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/Library/Code_Abstract_Nat.thy Thu Feb 14 12:24:56 2013 +0100 @@ -0,0 +1,113 @@ +(* Title: HOL/Library/Code_Abstract_Nat.thy + Author: Stefan Berghofer, Florian Haftmann, TU Muenchen +*) + +header {* Avoidance of pattern matching on natural numbers *} + +theory Code_Abstract_Nat +imports Main +begin + +text {* + When natural numbers are implemented in another than the + conventional inductive @{term "0::nat"}/@{term Suc} representation, + it is necessary to avoid all pattern matching on natural numbers + altogether. This is accomplished by this theory (up to a certain + extent). +*} + +subsection {* Case analysis *} + +text {* + Case analysis on natural numbers is rephrased using a conditional + expression: +*} + +lemma [code, code_unfold]: + "nat_case = (\f g n. if n = 0 then f else g (n - 1))" + by (auto simp add: fun_eq_iff dest!: gr0_implies_Suc) + + +subsection {* Preprocessors *} + +text {* + The term @{term "Suc n"} is no longer a valid pattern. Therefore, + all occurrences of this term in a position where a pattern is + expected (i.e.~on the left-hand side of a code equation) must be + eliminated. This can be accomplished – as far as possible – by + applying the following transformation rule: +*} + +lemma Suc_if_eq: "(\n. f (Suc n) \ h n) \ f 0 \ g \ + f n \ if n = 0 then g else h (n - 1)" + by (rule eq_reflection) (cases n, simp_all) + +text {* + The rule above is built into a preprocessor that is plugged into + the code generator. +*} + +setup {* +let + +fun remove_suc thy thms = + let + val vname = singleton (Name.variant_list (map fst + (fold (Term.add_var_names o Thm.full_prop_of) thms []))) "n"; + val cv = cterm_of thy (Var ((vname, 0), HOLogic.natT)); + fun lhs_of th = snd (Thm.dest_comb + (fst (Thm.dest_comb (cprop_of th)))); + fun rhs_of th = snd (Thm.dest_comb (cprop_of th)); + fun find_vars ct = (case term_of ct of + (Const (@{const_name Suc}, _) $ Var _) => [(cv, snd (Thm.dest_comb ct))] + | _ $ _ => + let val (ct1, ct2) = Thm.dest_comb ct + in + map (apfst (fn ct => Thm.apply ct ct2)) (find_vars ct1) @ + map (apfst (Thm.apply ct1)) (find_vars ct2) + end + | _ => []); + val eqs = maps + (fn th => map (pair th) (find_vars (lhs_of th))) thms; + fun mk_thms (th, (ct, cv')) = + let + val th' = + Thm.implies_elim + (Conv.fconv_rule (Thm.beta_conversion true) + (Drule.instantiate' + [SOME (ctyp_of_term ct)] [SOME (Thm.lambda cv ct), + SOME (Thm.lambda cv' (rhs_of th)), NONE, SOME cv'] + @{thm Suc_if_eq})) (Thm.forall_intr cv' th) + in + case map_filter (fn th'' => + SOME (th'', singleton + (Variable.trade (K (fn [th'''] => [th''' RS th'])) + (Variable.global_thm_context th'')) th'') + handle THM _ => NONE) thms of + [] => NONE + | thps => + let val (ths1, ths2) = split_list thps + in SOME (subtract Thm.eq_thm (th :: ths1) thms @ ths2) end + end + in get_first mk_thms eqs end; + +fun eqn_suc_base_preproc thy thms = + let + val dest = fst o Logic.dest_equals o prop_of; + val contains_suc = exists_Const (fn (c, _) => c = @{const_name Suc}); + in + if forall (can dest) thms andalso exists (contains_suc o dest) thms + then thms |> perhaps_loop (remove_suc thy) |> (Option.map o map) Drule.zero_var_indexes + else NONE + end; + +val eqn_suc_preproc = Code_Preproc.simple_functrans eqn_suc_base_preproc; + +in + + Code_Preproc.add_functrans ("eqn_Suc", eqn_suc_preproc) + +end; +*} + +end