diff -r 691c02d1699b -r 223172b97d0b src/HOL/Analysis/Gamma_Function.thy --- a/src/HOL/Analysis/Gamma_Function.thy Wed Jun 06 13:04:52 2018 +0200 +++ b/src/HOL/Analysis/Gamma_Function.thy Wed Jun 06 18:19:55 2018 +0200 @@ -1148,8 +1148,7 @@ lemma Gamma_1 [simp]: "Gamma 1 = 1" unfolding Gamma_def by simp lemma Gamma_fact: "Gamma (1 + of_nat n) = fact n" - by (simp add: pochhammer_fact pochhammer_Gamma of_nat_in_nonpos_Ints_iff - reorient: of_nat_Suc) + by (simp add: pochhammer_fact pochhammer_Gamma of_nat_in_nonpos_Ints_iff flip: of_nat_Suc) lemma Gamma_numeral: "Gamma (numeral n) = fact (pred_numeral n)" by (subst of_nat_numeral[symmetric], subst numeral_eq_Suc, @@ -2430,7 +2429,7 @@ inverse ((- 1) ^ n * fact n :: 'a)" by (intro tendsto_intros rGamma_zeros) simp_all also have "inverse ((- 1) ^ n * fact n) = ?c" - by (simp_all add: field_simps reorient: power_mult_distrib) + by (simp_all add: field_simps flip: power_mult_distrib) finally show "(\z. inverse (rGamma z / (z + of_nat n))) \ (- of_nat n) \ ?c" . qed