diff -r 691c02d1699b -r 223172b97d0b src/HOL/Analysis/Set_Integral.thy --- a/src/HOL/Analysis/Set_Integral.thy Wed Jun 06 13:04:52 2018 +0200 +++ b/src/HOL/Analysis/Set_Integral.thy Wed Jun 06 18:19:55 2018 +0200 @@ -869,7 +869,7 @@ 2 * (\\<^sup>+x. norm(f x) \M)" by simp have le: "ennreal (norm (F n x - f x)) \ ennreal (norm (f x)) + ennreal (norm (F n x))" for n x - by (simp add: norm_minus_commute norm_triangle_ineq4 ennreal_minus reorient: ennreal_plus) + by (simp add: norm_minus_commute norm_triangle_ineq4 ennreal_minus flip: ennreal_plus) then have le2: "(\\<^sup>+ x. ennreal (norm (F n x - f x)) \M) \ (\\<^sup>+ x. ennreal (norm (f x)) + ennreal (norm (F n x)) \M)" for n by (rule nn_integral_mono) @@ -882,7 +882,7 @@ proof (intro arg_cong[where f=liminf] ext) fix n have "\x. ennreal(G n x) = ennreal(norm(f x)) + ennreal(norm(F n x)) - ennreal(norm(F n x - f x))" - unfolding G_def by (simp add: ennreal_minus reorient: ennreal_plus) + unfolding G_def by (simp add: ennreal_minus flip: ennreal_plus) moreover have "(\\<^sup>+x. ennreal(norm(f x)) + ennreal(norm(F n x)) - ennreal(norm(F n x - f x)) \M) = (\\<^sup>+x. ennreal(norm(f x)) + ennreal(norm(F n x)) \M) - (\\<^sup>+x. norm(F n x - f x) \M)" proof (rule nn_integral_diff)