diff -r 8faf184ba5b1 -r 22d16596c306 doc-src/TutorialI/Rules/rules.tex --- a/doc-src/TutorialI/Rules/rules.tex Thu Nov 01 13:44:44 2007 +0100 +++ b/doc-src/TutorialI/Rules/rules.tex Thu Nov 01 20:20:19 2007 +0100 @@ -1841,7 +1841,7 @@ \label{sec:THEN} Let us reproduce our examples in Isabelle. Recall that in -{\S}\ref{sec:recdef-simplification} we declared the recursive function +{\S}\ref{sec:fun-simplification} we declared the recursive function \isa{gcd}:\index{*gcd (constant)|(} \begin{isabelle} \isacommand{consts}\ gcd\ ::\ "nat*nat\ \isasymRightarrow\ nat"\isanewline @@ -2473,7 +2473,7 @@ % We use induction: \isa{gcd.induct} is the induction rule returned by \isa{recdef}. We simplify using -rules proved in {\S}\ref{sec:recdef-simplification}, since rewriting by the +rules proved in {\S}\ref{sec:fun-simplification}, since rewriting by the definition of \isa{gcd} can loop. \begin{isabelle} \isacommand{lemma}\ gcd_dvd_both:\ "(gcd(m,n)\ dvd\ m)\ \isasymand\ (gcd(m,n)\ dvd\