diff -r 340df9f3491f -r 22f665a2e91c src/HOL/Probability/Information.thy --- a/src/HOL/Probability/Information.thy Sun Sep 11 22:56:05 2011 +0200 +++ b/src/HOL/Probability/Information.thy Mon Sep 12 07:55:43 2011 +0200 @@ -35,7 +35,7 @@ have "convex_on {0 <..} (\ x. - log b x)" by (rule minus_log_convex[OF `b > 1`]) hence "- log b (\ i \ s. a i * y i) \ (\ i \ s. a i * - log b (y i))" - using convex_on_setsum[of _ _ "\ x. - log b x"] assms pos_is_convex by fastsimp + using convex_on_setsum[of _ _ "\ x. - log b x"] assms pos_is_convex by fastforce thus ?thesis by (auto simp add:setsum_negf le_imp_neg_le) qed @@ -1327,7 +1327,7 @@ shows "finite (g`A)" proof - from subvimage_translator_image[OF svi] - obtain h where "g`A = h`f`A" by fastsimp + obtain h where "g`A = h`f`A" by fastforce with fin show "finite (g`A)" by simp qed