diff -r 340df9f3491f -r 22f665a2e91c src/HOL/Probability/Lebesgue_Measure.thy --- a/src/HOL/Probability/Lebesgue_Measure.thy Sun Sep 11 22:56:05 2011 +0200 +++ b/src/HOL/Probability/Lebesgue_Measure.thy Mon Sep 12 07:55:43 2011 +0200 @@ -18,7 +18,7 @@ unfolding cube_def by auto lemma cube_subset[intro]: "n \ N \ cube n \ cube N" - by (fastsimp simp: eucl_le[where 'a='a] cube_def) + by (fastforce simp: eucl_le[where 'a='a] cube_def) lemma cube_subset_iff: "cube n \ cube N \ n \ N" @@ -26,9 +26,9 @@ assume subset: "cube n \ (cube N::'a set)" then have "((\\ i. real n)::'a) \ cube N" using DIM_positive[where 'a='a] - by (fastsimp simp: cube_def eucl_le[where 'a='a]) + by (fastforce simp: cube_def eucl_le[where 'a='a]) then show "n \ N" - by (fastsimp simp: cube_def eucl_le[where 'a='a]) + by (fastforce simp: cube_def eucl_le[where 'a='a]) next assume "n \ N" then show "cube n \ (cube N::'a set)" by (rule cube_subset) qed @@ -873,7 +873,7 @@ show "Int_stable ?E" using Int_stable_cuboids . show "range cube \ sets ?E" unfolding cube_def_raw by auto show "incseq cube" using cube_subset_Suc by (auto intro!: incseq_SucI) - { fix x have "\n. x \ cube n" using mem_big_cube[of x] by fastsimp } + { fix x have "\n. x \ cube n" using mem_big_cube[of x] by fastforce } then show "(\i. cube i) = space ?E" by auto { fix i show "lborel.\ (cube i) \ \" unfolding cube_def by auto } show "A \ sets (sigma ?E)" "sets (sigma ?E) = sets lborel" "space ?E = space lborel" @@ -997,7 +997,7 @@ proof (rule measure_unique_Int_stable[where X=X, OF Int_stable_atLeastAtMost], unfold * **) show "X \ sets (sigma ?E)" unfolding borel_eq_atLeastAtMost[symmetric] by fact - have "\x. \xa. x \ cube xa" apply(rule_tac x=x in mem_big_cube) by fastsimp + have "\x. \xa. x \ cube xa" apply(rule_tac x=x in mem_big_cube) by fastforce then show "(\i. cube i) = space ?E" by auto show "incseq cube" by (intro incseq_SucI cube_subset_Suc) show "range cube \ sets ?E"