diff -r 4c2a61a897d8 -r 230a8665c919 src/HOL/Multivariate_Analysis/Integration.thy --- a/src/HOL/Multivariate_Analysis/Integration.thy Tue Aug 09 08:53:12 2011 -0700 +++ b/src/HOL/Multivariate_Analysis/Integration.thy Tue Aug 09 10:30:00 2011 -0700 @@ -4476,7 +4476,7 @@ "bounded {integral {a..b} (f k) | k . k \ UNIV}" shows "g integrable_on {a..b} \ ((\k. integral ({a..b}) (f k)) ---> integral ({a..b}) g) sequentially" proof(case_tac[!] "content {a..b} = 0") assume as:"content {a..b} = 0" - show ?thesis using integrable_on_null[OF as] unfolding integral_null[OF as] using Lim_const by auto + show ?thesis using integrable_on_null[OF as] unfolding integral_null[OF as] using tendsto_const by auto next assume ab:"content {a..b} \ 0" have fg:"\x\{a..b}. \ k. (f k x) $$ 0 \ (g x) $$ 0" proof safe case goal1 note assms(3)[rule_format,OF this] @@ -4631,7 +4631,8 @@ proof(rule monotone_convergence_interval,safe) case goal1 show ?case using int . next case goal2 thus ?case apply-apply(cases "x\s") using assms(3) by auto - next case goal3 thus ?case apply-apply(cases "x\s") using assms(4) by auto + next case goal3 thus ?case apply-apply(cases "x\s") + using assms(4) by (auto intro: tendsto_const) next case goal4 note * = integral_nonneg have "\k. norm (integral {a..b} (\x. if x \ s then f k x else 0)) \ norm (integral s (f k))" unfolding real_norm_def apply(subst abs_of_nonneg) apply(rule *[OF int]) @@ -4681,13 +4682,13 @@ proof- case goal1 thus ?case using *[of x 0 "Suc k"] by auto next case goal2 thus ?case apply(rule integrable_sub) using assms(1) by auto next case goal3 thus ?case using *[of x "Suc k" "Suc (Suc k)"] by auto - next case goal4 thus ?case apply-apply(rule Lim_sub) - using seq_offset[OF assms(3)[rule_format],of x 1] by auto + next case goal4 thus ?case apply-apply(rule tendsto_diff) + using seq_offset[OF assms(3)[rule_format],of x 1] by (auto intro: tendsto_const) next case goal5 thus ?case using assms(4) unfolding bounded_iff apply safe apply(rule_tac x="a + norm (integral s (\x. f 0 x))" in exI) apply safe apply(erule_tac x="integral s (\x. f (Suc k) x)" in ballE) unfolding sub apply(rule order_trans[OF norm_triangle_ineq4]) by auto qed - note conjunctD2[OF this] note Lim_add[OF this(2) Lim_const[of "integral s (f 0)"]] + note conjunctD2[OF this] note tendsto_add[OF this(2) tendsto_const[of "integral s (f 0)"]] integrable_add[OF this(1) assms(1)[rule_format,of 0]] thus ?thesis unfolding sub apply-apply rule defer apply(subst(asm) integral_sub) using assms(1) apply auto apply(rule seq_offset_rev[where k=1]) by auto qed @@ -4702,11 +4703,11 @@ apply(rule_tac x=k in exI) unfolding integral_neg[OF assm(1)] by auto have "(\x. - g x) integrable_on s \ ((\k. integral s (\x. - f k x)) ---> integral s (\x. - g x)) sequentially" apply(rule monotone_convergence_increasing) - apply(safe,rule integrable_neg) apply(rule assm) defer apply(rule Lim_neg) + apply(safe,rule integrable_neg) apply(rule assm) defer apply(rule tendsto_minus) apply(rule assm,assumption) unfolding * apply(rule bounded_scaling) using assm by auto note * = conjunctD2[OF this] show ?thesis apply rule using integrable_neg[OF *(1)] defer - using Lim_neg[OF *(2)] apply- unfolding integral_neg[OF assm(1)] + using tendsto_minus[OF *(2)] apply- unfolding integral_neg[OF assm(1)] unfolding integral_neg[OF *(1),THEN sym] by auto qed subsection {* absolute integrability (this is the same as Lebesgue integrability). *}