diff -r e9ab4ad7bd15 -r 23307fd33906 src/Doc/Tutorial/Recdef/Nested0.thy --- a/src/Doc/Tutorial/Recdef/Nested0.thy Thu Jan 11 13:48:17 2018 +0100 +++ b/src/Doc/Tutorial/Recdef/Nested0.thy Fri Jan 12 14:08:53 2018 +0100 @@ -2,14 +2,14 @@ theory Nested0 imports Main begin (*>*) -text{* +text\ \index{datatypes!nested}% In \S\ref{sec:nested-datatype} we defined the datatype of terms -*} +\ datatype ('a,'b)"term" = Var 'a | App 'b "('a,'b)term list" -text{*\noindent +text\\noindent and closed with the observation that the associated schema for the definition of primitive recursive functions leads to overly verbose definitions. Moreover, if you have worked exercise~\ref{ex:trev-trev} you will have noticed that @@ -18,7 +18,7 @@ We will now show you how \isacommand{recdef} can simplify definitions and proofs about nested recursive datatypes. As an example we choose exercise~\ref{ex:trev-trev}: -*} +\ consts trev :: "('a,'b)term \ ('a,'b)term" (*<*)end(*>*)