diff -r e9ab4ad7bd15 -r 23307fd33906 src/Doc/Tutorial/Rules/Blast.thy --- a/src/Doc/Tutorial/Rules/Blast.thy Thu Jan 11 13:48:17 2018 +0100 +++ b/src/Doc/Tutorial/Rules/Blast.thy Fri Jan 12 14:08:53 2018 +0100 @@ -4,9 +4,9 @@ ((\x. \y. q(x)=q(y)) = ((\x. p(x))=(\y. q(y))))" by blast -text{*\noindent Until now, we have proved everything using only induction and +text\\noindent Until now, we have proved everything using only induction and simplification. Substantial proofs require more elaborate types of -inference.*} +inference.\ lemma "(\x. honest(x) \ industrious(x) \ healthy(x)) \ \ (\x. grocer(x) \ healthy(x)) \ @@ -20,13 +20,13 @@ (\i\I. \j\J. A(i) \ B(j))" by blast -text {* +text \ @{thm[display] mult_is_0} \rulename{mult_is_0}} @{thm[display] finite_Un} \rulename{finite_Un}} -*} +\ lemma [iff]: "(xs@ys = []) = (xs=[] & ys=[])"