diff -r e9ab4ad7bd15 -r 23307fd33906 src/Doc/Tutorial/Sets/Functions.thy --- a/src/Doc/Tutorial/Sets/Functions.thy Thu Jan 11 13:48:17 2018 +0100 +++ b/src/Doc/Tutorial/Sets/Functions.thy Fri Jan 12 14:08:53 2018 +0100 @@ -1,7 +1,7 @@ theory Functions imports Main begin -text{* +text\ @{thm[display] id_def[no_vars]} \rulename{id_def} @@ -10,18 +10,18 @@ @{thm[display] o_assoc[no_vars]} \rulename{o_assoc} -*} +\ -text{* +text\ @{thm[display] fun_upd_apply[no_vars]} \rulename{fun_upd_apply} @{thm[display] fun_upd_upd[no_vars]} \rulename{fun_upd_upd} -*} +\ -text{* +text\ definitions of injective, surjective, bijective @{thm[display] inj_on_def[no_vars]} @@ -32,15 +32,15 @@ @{thm[display] bij_def[no_vars]} \rulename{bij_def} -*} +\ -text{* +text\ possibly interesting theorems about inv -*} +\ -text{* +text\ @{thm[display] inv_f_f[no_vars]} \rulename{inv_f_f} @@ -61,9 +61,9 @@ @{thm[display] o_inv_distrib[no_vars]} \rulename{o_inv_distrib} -*} +\ -text{* +text\ small sample proof @{thm[display] ext[no_vars]} @@ -71,35 +71,35 @@ @{thm[display] fun_eq_iff[no_vars]} \rulename{fun_eq_iff} -*} +\ lemma "inj f \ (f o g = f o h) = (g = h)" apply (simp add: fun_eq_iff inj_on_def) apply (auto) done -text{* +text\ \begin{isabelle} inj\ f\ \isasymLongrightarrow \ (f\ \isasymcirc \ g\ =\ f\ \isasymcirc \ h)\ =\ (g\ =\ h)\isanewline \ 1.\ \isasymforall x\ y.\ f\ x\ =\ f\ y\ \isasymlongrightarrow \ x\ =\ y\ \isasymLongrightarrow \isanewline \ \ \ \ (\isasymforall x.\ f\ (g\ x)\ =\ f\ (h\ x))\ =\ (\isasymforall x.\ g\ x\ =\ h\ x) \end{isabelle} -*} +\ -text{*image, inverse image*} +text\image, inverse image\ -text{* +text\ @{thm[display] image_def[no_vars]} \rulename{image_def} -*} +\ -text{* +text\ @{thm[display] image_Un[no_vars]} \rulename{image_Un} -*} +\ -text{* +text\ @{thm[display] image_comp[no_vars]} \rulename{image_comp} @@ -108,12 +108,12 @@ @{thm[display] bij_image_Compl_eq[no_vars]} \rulename{bij_image_Compl_eq} -*} +\ -text{* +text\ illustrates Union as well as image -*} +\ lemma "f`A \ g`A = (\x\A. {f x, g x})" by blast @@ -121,23 +121,23 @@ lemma "f ` {(x,y). P x y} = {f(x,y) | x y. P x y}" by blast -text{*actually a macro!*} +text\actually a macro!\ lemma "range f = f`UNIV" by blast -text{* +text\ inverse image -*} +\ -text{* +text\ @{thm[display] vimage_def[no_vars]} \rulename{vimage_def} @{thm[display] vimage_Compl[no_vars]} \rulename{vimage_Compl} -*} +\ end