diff -r 241c6a2fdda1 -r 23d2cbac6dce src/HOL/Multivariate_Analysis/Cartesian_Euclidean_Space.thy --- a/src/HOL/Multivariate_Analysis/Cartesian_Euclidean_Space.thy Sun Feb 16 18:46:13 2014 +0100 +++ b/src/HOL/Multivariate_Analysis/Cartesian_Euclidean_Space.thy Sun Feb 16 21:09:47 2014 +0100 @@ -1158,7 +1158,7 @@ by (rule convex_box_cart) (simp add: atLeast_def[symmetric] convex_real_interval) lemma unit_interval_convex_hull_cart: - "{0::real^'n .. 1} = convex hull {x. \i. (x$i = 0) \ (x$i = 1)}" (is "?int = convex hull ?points") + "{0::real^'n .. 1} = convex hull {x. \i. (x$i = 0) \ (x$i = 1)}" unfolding Cart_1 unit_interval_convex_hull[where 'a="real^'n"] by (rule arg_cong[where f="\x. convex hull x"]) (simp add: Basis_vec_def inner_axis) @@ -1167,8 +1167,11 @@ obtains s::"(real^'n) set" where "finite s" "{x - (\ i. d) .. x + (\ i. d)} = convex hull s" proof - - from cube_convex_hull [OF assms, of x] guess s . - with that[of s] show thesis by (simp add: const_vector_cart) + from assms obtain s where "finite s" + and "{x - setsum (op *\<^sub>R d) Basis..x + setsum (op *\<^sub>R d) Basis} = convex hull s" + by (rule cube_convex_hull) + with that[of s] show thesis + by (simp add: const_vector_cart) qed