diff -r 1cf129590be8 -r 24106dc44def src/HOL/Probability/Nonnegative_Lebesgue_Integration.thy --- a/src/HOL/Probability/Nonnegative_Lebesgue_Integration.thy Wed Feb 17 21:51:55 2016 +0100 +++ b/src/HOL/Probability/Nonnegative_Lebesgue_Integration.thy Wed Feb 17 21:51:56 2016 +0100 @@ -932,7 +932,7 @@ have "a * u x < 1 * u x" by (intro ereal_mult_strict_right_mono) (auto simp: image_iff) also have "\ \ (SUP i. f i x)" using u(2) by (auto simp: le_fun_def) - finally obtain i where "a * u x < f i x" unfolding SUP_def + finally obtain i where "a * u x < f i x" by (auto simp add: less_SUP_iff) hence "a * u x \ f i x" by auto thus ?thesis using \x \ space M\ by auto @@ -2042,7 +2042,7 @@ by (auto intro!: SUP_least SUP_upper nn_integral_mono) next have "\x. \g. incseq g \ range g \ (\i. f i x) ` Y \ (SUP i:Y. f i x) = (SUP i. g i)" - unfolding Sup_class.SUP_def by(rule Sup_countable_SUP[unfolded Sup_class.SUP_def])(simp add: nonempty) + by (rule Sup_countable_SUP) (simp add: nonempty) then obtain g where incseq: "\x. incseq (g x)" and range: "\x. range (g x) \ (\i. f i x) ` Y" and sup: "\x. (SUP i:Y. f i x) = (SUP i. g x i)" by moura @@ -2088,8 +2088,8 @@ assume "x \ {.. \ (SUP i:?Y. f i) x" unfolding SUP_def Sup_fun_def image_image - using \x \ {.. by(rule Sup_upper[OF imageI]) + also have "\ \ (SUP i:?Y. f i) x" unfolding Sup_fun_def image_image + using \x \ {.. by (rule Sup_upper [OF imageI]) also have "\ = f (I m') x" unfolding m' by simp finally show "g x n \ f (I m') x" . qed @@ -2264,7 +2264,7 @@ by (subst s_eq) (auto simp: image_subset_iff le_fun_def split: split_indicator split_indicator_asm) qed then show ?thesis - unfolding nn_integral_def_finite SUP_def by simp + unfolding nn_integral_def_finite by (simp cong del: strong_SUP_cong) qed lemma nn_integral_count_space_indicator: