diff -r b04508c59b9d -r 2488fc510178 src/HOL/NumberTheory/Euler.thy --- a/src/HOL/NumberTheory/Euler.thy Mon Dec 17 18:24:44 2007 +0100 +++ b/src/HOL/NumberTheory/Euler.thy Mon Dec 17 18:27:48 2007 +0100 @@ -91,9 +91,7 @@ apply (auto simp add: MultInvPair_def) apply (subgoal_tac "~ (StandardRes p j = StandardRes p (a * MultInv p j))") apply auto - apply (simp only: StandardRes_prop2) - apply (drule MultInvPair_distinct) - apply auto back + apply (metis MultInvPair_distinct Pls_def StandardRes_prop2 int_0_less_1 less_Pls_Bit0 number_of_is_id one_is_num_one order_less_trans) done @@ -297,15 +295,14 @@ [x^(nat (((p) - 1) div 2)) = 1](mod p)" apply (subgoal_tac "p \ zOdd") apply (auto simp add: QuadRes_def) + prefer 2 + apply (metis number_of_is_id numeral_1_eq_1 zprime_zOdd_eq_grt_2) apply (frule aux__1, auto) apply (drule_tac z = "nat ((p - 1) div 2)" in zcong_zpower) - apply (auto simp add: zpower_zpower) + apply (auto simp add: zpower_zpower) apply (rule zcong_trans) apply (auto simp add: zcong_sym [of "x ^ nat ((p - 1) div 2)"]) - apply (simp add: aux__2) - apply (frule odd_minus_one_even) - apply (frule even_div_2_prop2) - apply (auto intro: Little_Fermat simp add: zprime_zOdd_eq_grt_2) + apply (metis Little_Fermat even_div_2_prop2 mult_num0 number_of_is_id odd_minus_one_even one_is_num_one zmult_1 aux__2) done