diff -r f30b73385060 -r 25b068a99d2b src/HOL/Integ/NatBin.thy --- a/src/HOL/Integ/NatBin.thy Wed Jul 26 13:31:07 2006 +0200 +++ b/src/HOL/Integ/NatBin.thy Wed Jul 26 19:23:04 2006 +0200 @@ -88,12 +88,11 @@ text{*Suggested by Matthias Daum*} lemma int_div_less_self: "\0 < x; 1 < k\ \ x div k < (x::int)" -apply (subgoal_tac "nat x div nat k < nat x") - apply (simp add: nat_div_distrib [symmetric]) +apply (subgoal_tac "nat x div nat k < nat x") + apply (simp (asm_lr) add: nat_div_distrib [symmetric]) apply (rule Divides.div_less_dividend, simp_all) done - subsection{*Function @{term int}: Coercion from Type @{typ nat} to @{typ int}*} (*"neg" is used in rewrite rules for binary comparisons*) @@ -148,7 +147,6 @@ else let d = z-z' in if neg d then 0 else nat d)" apply (simp add: Let_def nat_diff_distrib [symmetric] neg_eq_less_0 not_neg_eq_ge_0) -apply (simp add: diff_is_0_eq nat_le_eq_zle) done lemma diff_nat_number_of [simp]: @@ -628,7 +626,6 @@ lemma nat_number_of_Min: "number_of Numeral.Min = (0::nat)" apply (simp only: number_of_Min nat_number_of_def nat_zminus_int) - apply (simp add: neg_nat) done lemma nat_number_of_BIT_1: @@ -676,7 +673,7 @@ by (simp only: mult_2 nat_add_distrib of_nat_add) lemma nat_numeral_m1_eq_0: "-1 = (0::nat)" -by (simp only: nat_number_of_def, simp) +by (simp only: nat_number_of_def) lemma of_nat_number_of_lemma: "of_nat (number_of v :: nat) =