diff -r 0aa2d1c132b2 -r 25dd3726fd00 src/HOL/Groups_List.thy --- a/src/HOL/Groups_List.thy Wed Feb 05 16:34:56 2025 +0000 +++ b/src/HOL/Groups_List.thy Thu Feb 06 16:20:52 2025 +0000 @@ -203,15 +203,15 @@ lemma sum_list_eq_0_iff [simp]: "sum_list ns = 0 \ (\n \ set ns. n = 0)" -by (simp add: sum_list_nonneg_eq_0_iff) + by (simp add: sum_list_nonneg_eq_0_iff) lemma member_le_sum_list: "x \ set xs \ x \ sum_list xs" -by (induction xs) (auto simp: add_increasing add_increasing2) + by (induction xs) (auto simp: add_increasing add_increasing2) lemma elem_le_sum_list: "k < size ns \ ns ! k \ sum_list (ns)" -by (rule member_le_sum_list) simp + by (simp add: member_le_sum_list) end @@ -379,6 +379,7 @@ thus ?case by simp qed +(*Note that we also have this for class canonically_ordered_monoid_add*) lemma member_le_sum_list: fixes x :: "'a :: ordered_comm_monoid_add" assumes "x \ set xs" "\x. x \ set xs \ x \ 0"