diff -r 0a12ca4f3e8d -r 26171a89466a src/HOL/Limits.thy --- a/src/HOL/Limits.thy Sat Jun 26 20:55:43 2021 +0200 +++ b/src/HOL/Limits.thy Mon Jun 28 15:05:46 2021 +0100 @@ -1777,7 +1777,15 @@ qed lemma tendsto_inverse_0_at_top: "LIM x F. f x :> at_top \ ((\x. inverse (f x) :: real) \ 0) F" - by (metis filterlim_at filterlim_mono[OF _ at_top_le_at_infinity order_refl] filterlim_inverse_at_iff) + by (metis filterlim_at filterlim_mono[OF _ at_top_le_at_infinity order_refl] filterlim_inverse_at_iff) + +lemma filterlim_inverse_at_top_iff: + "eventually (\x. 0 < f x) F \ (LIM x F. inverse (f x) :> at_top) \ (f \ (0 :: real)) F" + by (auto dest: tendsto_inverse_0_at_top filterlim_inverse_at_top) + +lemma filterlim_at_top_iff_inverse_0: + "eventually (\x. 0 < f x) F \ (LIM x F. f x :> at_top) \ ((inverse \ f) \ (0 :: real)) F" + using filterlim_inverse_at_top_iff [of "inverse \ f"] by auto lemma real_tendsto_divide_at_top: fixes c::"real"