diff -r bfc2e92d9b4c -r 261d42f0bfac src/HOL/Number_Theory/Pocklington.thy --- a/src/HOL/Number_Theory/Pocklington.thy Tue Oct 18 07:04:08 2016 +0200 +++ b/src/HOL/Number_Theory/Pocklington.thy Mon Oct 17 15:20:06 2016 +0200 @@ -10,7 +10,7 @@ subsection\Lemmas about previously defined terms\ -lemma prime: +lemma prime_nat_iff'': "prime (p::nat) \ p \ 0 \ p \ 1 \ (\m. 0 < m \ m < p \ coprime p m)" unfolding prime_nat_iff proof safe @@ -78,7 +78,7 @@ from pa have ap: "coprime a p" by (metis gcd.commute) have px:"coprime x p" - by (metis gcd.commute p prime x0 xp) + by (metis gcd.commute p prime_nat_iff'' x0 xp) obtain y where y: "y < p" "[x * y = a] (mod p)" "\z. z < p \ [x * z = a] (mod p) \ z = y" by (metis cong_solve_unique neq0_conv p prime_gt_0_nat px) {assume y0: "y = 0"