diff -r 4900351361b0 -r 269dcea7426c src/HOL/Library/Infinite_Set.thy --- a/src/HOL/Library/Infinite_Set.thy Wed Apr 17 17:48:28 2019 +0100 +++ b/src/HOL/Library/Infinite_Set.thy Wed Apr 17 21:53:45 2019 +0100 @@ -8,27 +8,6 @@ imports Main begin -lemma subset_image_inj: - "S \ f ` T \ (\U. U \ T \ inj_on f U \ S = f ` U)" -proof safe - show "\U\T. inj_on f U \ S = f ` U" - if "S \ f ` T" - proof - - from that [unfolded subset_image_iff subset_iff] - obtain g where g: "\x. x \ S \ g x \ T \ x = f (g x)" - unfolding image_iff by metis - show ?thesis - proof (intro exI conjI) - show "g ` S \ T" - by (simp add: g image_subsetI) - show "inj_on f (g ` S)" - using g by (auto simp: inj_on_def) - show "S = f ` (g ` S)" - using g image_subset_iff by auto - qed - qed -qed blast - subsection \The set of natural numbers is infinite\ lemma infinite_nat_iff_unbounded_le: "infinite S \ (\m. \n\m. n \ S)"