diff -r 6e85281177df -r 26a1d66b9077 src/HOL/Library/Float.thy --- a/src/HOL/Library/Float.thy Mon May 10 14:28:37 2021 +0200 +++ b/src/HOL/Library/Float.thy Mon May 10 16:14:34 2021 +0200 @@ -2122,7 +2122,7 @@ proof cases assume [simp]: "even j" have "a * power_down prec a j \ b * power_down prec b j" - by (smt IH(1) IH(2) \even j\ lessI mult_mono' mult_mono_nonpos_nonneg power_down_even_nonneg) + by (metis IH(1) IH(2) \even j\ lessI linear mult_mono mult_mono' mult_mono_nonpos_nonneg power_down_even_nonneg) then have "truncate_down (Suc prec) (a * power_down prec a j) \ truncate_down (Suc prec) (b * power_down prec b j)" by (auto intro!: truncate_down_mono simp: abs_le_square_iff[symmetric] abs_real_def) then show ?thesis @@ -2193,7 +2193,7 @@ proof cases assume [simp]: "even j" have "a * power_up prec a j \ b * power_up prec b j" - by (smt IH(1) IH(2) \even j\ lessI mult_mono' mult_mono_nonpos_nonneg power_up_even_nonneg) + by (metis IH(1) IH(2) \even j\ lessI linear mult_mono mult_mono' mult_mono_nonpos_nonneg power_up_even_nonneg) then have "truncate_up prec (a * power_up prec a j) \ truncate_up prec (b * power_up prec b j)" by (auto intro!: truncate_up_mono simp: abs_le_square_iff[symmetric] abs_real_def) then show ?thesis