diff -r cf947d1ec5ff -r 26e5f5e624f6 src/HOL/NumberTheory/Euler.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/NumberTheory/Euler.thy Thu Mar 20 15:58:25 2003 +0100 @@ -0,0 +1,345 @@ +(* Title: HOL/Quadratic_Reciprocity/Euler.thy + Authors: Jeremy Avigad, David Gray, and Adam Kramer + License: GPL (GNU GENERAL PUBLIC LICENSE) +*) + +header {* Euler's criterion *} + +theory Euler = Residues + EvenOdd:; + +constdefs + MultInvPair :: "int => int => int => int set" + "MultInvPair a p j == {StandardRes p j, StandardRes p (a * (MultInv p j))}" + SetS :: "int => int => int set set" + "SetS a p == ((MultInvPair a p) ` (SRStar p))"; + +(****************************************************************) +(* *) +(* Property for MultInvPair *) +(* *) +(****************************************************************) + +lemma MultInvPair_prop1a: "[| p \ zprime; 2 < p; ~([a = 0](mod p)); + X \ (SetS a p); Y \ (SetS a p); + ~((X \ Y) = {}) |] ==> + X = Y"; + apply (auto simp add: SetS_def) + apply (drule StandardRes_SRStar_prop1a)+; defer 1; + apply (drule StandardRes_SRStar_prop1a)+; + apply (auto simp add: MultInvPair_def StandardRes_prop2 zcong_sym) + apply (drule notE, rule MultInv_zcong_prop1, auto) + apply (drule notE, rule MultInv_zcong_prop2, auto) + apply (drule MultInv_zcong_prop2, auto) + apply (drule MultInv_zcong_prop3, auto simp add: zcong_sym) + apply (drule MultInv_zcong_prop1, auto) + apply (drule MultInv_zcong_prop2, auto) + apply (drule MultInv_zcong_prop2, auto) + apply (drule MultInv_zcong_prop3, auto simp add: zcong_sym) +done + +lemma MultInvPair_prop1b: "[| p \ zprime; 2 < p; ~([a = 0](mod p)); + X \ (SetS a p); Y \ (SetS a p); + X \ Y |] ==> + X \ Y = {}"; + apply (rule notnotD) + apply (rule notI) + apply (drule MultInvPair_prop1a, auto) +done + +lemma MultInvPair_prop1c: "[| p \ zprime; 2 < p; ~([a = 0](mod p)) |] ==> + \X \ SetS a p. \Y \ SetS a p. X \ Y --> X\Y = {}" + by (auto simp add: MultInvPair_prop1b) + +lemma MultInvPair_prop2: "[| p \ zprime; 2 < p; ~([a = 0](mod p)) |] ==> + Union ( SetS a p) = SRStar p"; + apply (auto simp add: SetS_def MultInvPair_def StandardRes_SRStar_prop4 + SRStar_mult_prop2) + apply (frule StandardRes_SRStar_prop3) + apply (rule bexI, auto) +done + +lemma MultInvPair_distinct: "[| p \ zprime; 2 < p; ~([a = 0] (mod p)); + ~([j = 0] (mod p)); + ~(QuadRes p a) |] ==> + ~([j = a * MultInv p j] (mod p))"; + apply auto +proof -; + assume "p \ zprime" and "2 < p" and "~([a = 0] (mod p))" and + "~([j = 0] (mod p))" and "~(QuadRes p a)"; + assume "[j = a * MultInv p j] (mod p)"; + then have "[j * j = (a * MultInv p j) * j] (mod p)"; + by (auto simp add: zcong_scalar) + then have a:"[j * j = a * (MultInv p j * j)] (mod p)"; + by (auto simp add: zmult_ac) + have "[j * j = a] (mod p)"; + proof -; + from prems have b: "[MultInv p j * j = 1] (mod p)"; + by (simp add: MultInv_prop2a) + from b a show ?thesis; + by (auto simp add: zcong_zmult_prop2) + qed; + then have "[j^2 = a] (mod p)"; + apply(subgoal_tac "2 = Suc(Suc(0))"); + apply (erule ssubst) + apply (auto simp only: power_Suc power_0) + by auto + with prems show False; + by (simp add: QuadRes_def) +qed; + +lemma MultInvPair_card_two: "[| p \ zprime; 2 < p; ~([a = 0] (mod p)); + ~(QuadRes p a); ~([j = 0] (mod p)) |] ==> + card (MultInvPair a p j) = 2"; + apply (auto simp add: MultInvPair_def) + apply (subgoal_tac "~ (StandardRes p j = StandardRes p (a * MultInv p j))"); + apply auto + apply (simp only: StandardRes_prop2) + apply (drule MultInvPair_distinct) +by auto + +(****************************************************************) +(* *) +(* Properties of SetS *) +(* *) +(****************************************************************) + +lemma SetS_finite: "2 < p ==> finite (SetS a p)"; + by (auto simp add: SetS_def SRStar_finite [of p] finite_imageI) + +lemma SetS_elems_finite: "\X \ SetS a p. finite X"; + by (auto simp add: SetS_def MultInvPair_def) + +lemma SetS_elems_card: "[| p \ zprime; 2 < p; ~([a = 0] (mod p)); + ~(QuadRes p a) |] ==> + \X \ SetS a p. card X = 2"; + apply (auto simp add: SetS_def) + apply (frule StandardRes_SRStar_prop1a) + apply (rule MultInvPair_card_two, auto) +done + +lemma Union_SetS_finite: "2 < p ==> finite (Union (SetS a p))"; + by (auto simp add: SetS_finite SetS_elems_finite finite_union_finite_subsets) + +lemma card_setsum_aux: "[| finite S; \X \ S. finite (X::int set); + \X \ S. card X = n |] ==> setsum card S = setsum (%x. n) S"; +by (induct set: Finites, auto) + +lemma SetS_card: "[| p \ zprime; 2 < p; ~([a = 0] (mod p)); ~(QuadRes p a) |] ==> + int(card(SetS a p)) = (p - 1) div 2"; +proof -; + assume "p \ zprime" and "2 < p" and "~([a = 0] (mod p))" and "~(QuadRes p a)"; + then have "(p - 1) = 2 * int(card(SetS a p))"; + proof -; + have "p - 1 = int(card(Union (SetS a p)))"; + by (auto simp add: prems MultInvPair_prop2 SRStar_card) + also have "... = int (setsum card (SetS a p))"; + by (auto simp add: prems SetS_finite SetS_elems_finite + MultInvPair_prop1c [of p a] card_union_disjoint_sets) + also have "... = int(setsum (%x.2) (SetS a p))"; + apply (insert prems) + apply (auto simp add: SetS_elems_card SetS_finite SetS_elems_finite + card_setsum_aux) + done + also have "... = 2 * int(card( SetS a p))"; + by (auto simp add: prems SetS_finite setsum_const2) + finally show ?thesis .; + qed; + from this show ?thesis; + by auto +qed; + +lemma SetS_setprod_prop: "[| p \ zprime; 2 < p; ~([a = 0] (mod p)); + ~(QuadRes p a); x \ (SetS a p) |] ==> + [setprod x = a] (mod p)"; + apply (auto simp add: SetS_def MultInvPair_def) + apply (frule StandardRes_SRStar_prop1a) + apply (subgoal_tac "StandardRes p x \ StandardRes p (a * MultInv p x)"); + apply (auto simp add: StandardRes_prop2 MultInvPair_distinct) + apply (frule_tac m = p and x = x and y = "(a * MultInv p x)" in + StandardRes_prop4); + apply (subgoal_tac "[x * (a * MultInv p x) = a * (x * MultInv p x)] (mod p)"); + apply (drule_tac a = "StandardRes p x * StandardRes p (a * MultInv p x)" and + b = "x * (a * MultInv p x)" and + c = "a * (x * MultInv p x)" in zcong_trans, force); + apply (frule_tac p = p and x = x in MultInv_prop2, auto) + apply (drule_tac a = "x * MultInv p x" and b = 1 in zcong_zmult_prop2) + apply (auto simp add: zmult_ac) +done + +lemma aux1: "[| 0 < x; (x::int) < a; x \ (a - 1) |] ==> x < a - 1"; + by arith + +lemma aux2: "[| (a::int) < c; b < c |] ==> (a \ b | b \ a)"; + by auto + +lemma SRStar_d22set_prop [rule_format]: "2 < p --> (SRStar p) = {1} \ + (d22set (p - 1))"; + apply (induct p rule: d22set.induct, auto) + apply (simp add: SRStar_def d22set.simps, arith) + apply (simp add: SRStar_def d22set.simps, clarify) + apply (frule aux1) + apply (frule aux2, auto) + apply (simp_all add: SRStar_def) + apply (simp add: d22set.simps) + apply (frule d22set_le) + apply (frule d22set_g_1, auto) +done + +lemma Union_SetS_setprod_prop1: "[| p \ zprime; 2 < p; ~([a = 0] (mod p)); ~(QuadRes p a) |] ==> + [setprod (Union (SetS a p)) = a ^ nat ((p - 1) div 2)] (mod p)"; +proof -; + assume "p \ zprime" and "2 < p" and "~([a = 0] (mod p))" and "~(QuadRes p a)"; + then have "[setprod (Union (SetS a p)) = + gsetprod setprod (SetS a p)] (mod p)"; + by (auto simp add: SetS_finite SetS_elems_finite + MultInvPair_prop1c setprod_disj_sets) + also; have "[gsetprod setprod (SetS a p) = + gsetprod (%x. a) (SetS a p)] (mod p)"; + apply (rule gsetprod_same_function_zcong) + by (auto simp add: prems SetS_setprod_prop SetS_finite) + also (zcong_trans) have "[gsetprod (%x. a) (SetS a p) = + a^(card (SetS a p))] (mod p)"; + by (auto simp add: prems SetS_finite gsetprod_const) + finally (zcong_trans) show ?thesis; + apply (rule zcong_trans) + apply (subgoal_tac "card(SetS a p) = nat((p - 1) div 2)", auto); + apply (subgoal_tac "nat(int(card(SetS a p))) = nat((p - 1) div 2)", force); + apply (auto simp add: prems SetS_card) + done +qed; + +lemma Union_SetS_setprod_prop2: "[| p \ zprime; 2 < p; ~([a = 0](mod p)) |] ==> + setprod (Union (SetS a p)) = zfact (p - 1)"; +proof -; + assume "p \ zprime" and "2 < p" and "~([a = 0](mod p))"; + then have "setprod (Union (SetS a p)) = setprod (SRStar p)"; + by (auto simp add: MultInvPair_prop2) + also have "... = setprod ({1} \ (d22set (p - 1)))"; + by (auto simp add: prems SRStar_d22set_prop) + also have "... = zfact(p - 1)"; + proof -; + have "~(1 \ d22set (p - 1)) & finite( d22set (p - 1))"; + apply (insert prems, auto) + apply (drule d22set_g_1) + apply (auto simp add: d22set_fin) + done + then have "setprod({1} \ (d22set (p - 1))) = setprod (d22set (p - 1))"; + by auto + then show ?thesis + by (auto simp add: d22set_prod_zfact) + qed; + finally show ?thesis .; +qed; + +lemma zfact_prop: "[| p \ zprime; 2 < p; ~([a = 0] (mod p)); ~(QuadRes p a) |] ==> + [zfact (p - 1) = a ^ nat ((p - 1) div 2)] (mod p)"; + apply (frule Union_SetS_setprod_prop1) + apply (auto simp add: Union_SetS_setprod_prop2) +done + +(****************************************************************) +(* *) +(* Prove the first part of Euler's Criterion: *) +(* ~(QuadRes p x) |] ==> *) +(* [x^(nat (((p) - 1) div 2)) = -1](mod p) *) +(* *) +(****************************************************************) + +lemma Euler_part1: "[| 2 < p; p \ zprime; ~([x = 0](mod p)); + ~(QuadRes p x) |] ==> + [x^(nat (((p) - 1) div 2)) = -1](mod p)"; + apply (frule zfact_prop, auto) + apply (frule Wilson_Russ) + apply (auto simp add: zcong_sym) + apply (rule zcong_trans, auto) +done + +(********************************************************************) +(* *) +(* Prove another part of Euler Criterion: *) +(* [a = 0] (mod p) ==> [0 = a ^ nat ((p - 1) div 2)] (mod p) *) +(* *) +(********************************************************************) + +lemma aux_1: "0 < p ==> (a::int) ^ nat (p) = a * a ^ (nat (p) - 1)"; +proof -; + assume "0 < p"; + then have "a ^ (nat p) = a ^ (1 + (nat p - 1))"; + by (auto simp add: diff_add_assoc) + also have "... = (a ^ 1) * a ^ (nat(p) - 1)"; + by (simp only: zpower_zadd_distrib) + also have "... = a * a ^ (nat(p) - 1)"; + by auto + finally show ?thesis .; +qed; + +lemma aux_2: "[| (2::int) < p; p \ zOdd |] ==> 0 < ((p - 1) div 2)"; +proof -; + assume "2 < p" and "p \ zOdd"; + then have "(p - 1):zEven"; + by (auto simp add: zEven_def zOdd_def) + then have aux_1: "2 * ((p - 1) div 2) = (p - 1)"; + by (auto simp add: even_div_2_prop2) + then have "1 < (p - 1)" + by auto + then have " 1 < (2 * ((p - 1) div 2))"; + by (auto simp add: aux_1) + then have "0 < (2 * ((p - 1) div 2)) div 2"; + by auto + then show ?thesis by auto +qed; + +lemma Euler_part2: "[| 2 < p; p \ zprime; [a = 0] (mod p) |] ==> [0 = a ^ nat ((p - 1) div 2)] (mod p)"; + apply (frule zprime_zOdd_eq_grt_2) + apply (frule aux_2, auto) + apply (frule_tac a = a in aux_1, auto) + apply (frule zcong_zmult_prop1, auto) +done + +(****************************************************************) +(* *) +(* Prove the final part of Euler's Criterion: *) +(* QuadRes p x |] ==> *) +(* [x^(nat (((p) - 1) div 2)) = 1](mod p) *) +(* *) +(****************************************************************) + +lemma aux__1: "[| ~([x = 0] (mod p)); [y ^ 2 = x] (mod p)|] ==> ~(p dvd y)"; + apply (subgoal_tac "[| ~([x = 0] (mod p)); [y ^ 2 = x] (mod p)|] ==> + ~([y ^ 2 = 0] (mod p))"); + apply (auto simp add: zcong_sym [of "y^2" x p] intro: zcong_trans) + apply (auto simp add: zcong_eq_zdvd_prop intro: zpower_zdvd_prop1) +done + +lemma aux__2: "2 * nat((p - 1) div 2) = nat (2 * ((p - 1) div 2))"; + by (auto simp add: nat_mult_distrib) + +lemma Euler_part3: "[| 2 < p; p \ zprime; ~([x = 0](mod p)); QuadRes p x |] ==> + [x^(nat (((p) - 1) div 2)) = 1](mod p)"; + apply (subgoal_tac "p \ zOdd") + apply (auto simp add: QuadRes_def) + apply (frule aux__1, auto) + apply (drule_tac z = "nat ((p - 1) div 2)" in zcong_zpower); + apply (auto simp add: zpower_zpower) + apply (rule zcong_trans) + apply (auto simp add: zcong_sym [of "x ^ nat ((p - 1) div 2)"]); + apply (simp add: aux__2) + apply (frule odd_minus_one_even) + apply (frule even_div_2_prop2) + apply (auto intro: Little_Fermat simp add: zprime_zOdd_eq_grt_2) +done + +(********************************************************************) +(* *) +(* Finally show Euler's Criterion *) +(* *) +(********************************************************************) + +theorem Euler_Criterion: "[| 2 < p; p \ zprime |] ==> [(Legendre a p) = + a^(nat (((p) - 1) div 2))] (mod p)"; + apply (auto simp add: Legendre_def Euler_part2) + apply (frule Euler_part3, auto simp add: zcong_sym) + apply (frule Euler_part1, auto simp add: zcong_sym) +done + +end; \ No newline at end of file