diff -r 2781ac7a4619 -r 27e4d90b35b5 src/HOL/Hyperreal/SEQ.ML --- a/src/HOL/Hyperreal/SEQ.ML Fri Jan 05 10:17:19 2001 +0100 +++ b/src/HOL/Hyperreal/SEQ.ML Fri Jan 05 10:17:48 2001 +0100 @@ -416,15 +416,13 @@ qed "BseqD"; Goalw [Bseq_def] - "[| #0 < K; ALL n. abs(X n) <= K |] \ -\ ==> Bseq X"; + "[| #0 < K; ALL n. abs(X n) <= K |] ==> Bseq X"; by (Blast_tac 1); qed "BseqI"; Goal "(EX K. #0 < K & (ALL n. abs(X n) <= K)) = \ \ (EX N. ALL n. abs(X n) <= real_of_nat(Suc N))"; by Auto_tac; -by (Force_tac 2); by (cut_inst_tac [("x","K")] reals_Archimedean2 1); by (Clarify_tac 1); by (res_inst_tac [("x","n")] exI 1); @@ -1255,12 +1253,11 @@ Proof will use (NS) Cauchy equivalence for convergence and also fact that bounded and monotonic sequence converges. ---------------------------------------------------------------*) -Goalw [Bseq_def] - "[| #0 <= x; x < #1 |] ==> Bseq (%n. x ^ n)"; +Goalw [Bseq_def] "[| #0 <= x; x < #1 |] ==> Bseq (%n. x ^ n)"; by (res_inst_tac [("x","#1")] exI 1); -by (auto_tac (claset() addDs [conjI RS realpow_le2] +by (auto_tac (claset() addDs [conjI RS realpow_le] addIs [order_less_imp_le], - simpset() addsimps [real_zero_less_one,abs_eqI1,realpow_abs RS sym] )); + simpset() addsimps [abs_eqI1, realpow_abs RS sym] )); qed "Bseq_realpow"; Goal "[| #0 <= x; x < #1 |] ==> monoseq (%n. x ^ n)";