diff -r 4ec8e654112f -r 2865a6618cba src/HOL/Basic_BNFs.thy --- a/src/HOL/Basic_BNFs.thy Thu Jun 26 17:25:29 2025 +0200 +++ b/src/HOL/Basic_BNFs.thy Thu Jun 26 17:25:29 2025 +0200 @@ -19,12 +19,12 @@ inductive_set setr :: "'a + 'b \ 'b set" for s :: "'a + 'b" where "s = Inr x \ x \ setr s" -lemma sum_set_defs[code]: +lemma sum_set_defs [code]: "setl = (\x. case x of Inl z \ {z} | _ \ {})" "setr = (\x. case x of Inr z \ {z} | _ \ {})" by (auto simp: fun_eq_iff intro: setl.intros setr.intros elim: setl.cases setr.cases split: sum.splits) -lemma rel_sum_simps[code, simp]: +lemma rel_sum_simps [code, simp]: "rel_sum R1 R2 (Inl a1) (Inl b1) = R1 a1 b1" "rel_sum R1 R2 (Inl a1) (Inr b2) = False" "rel_sum R1 R2 (Inr a2) (Inl b1) = False" @@ -37,7 +37,7 @@ "P1 a \ pred_sum P1 P2 (Inl a)" | "P2 b \ pred_sum P1 P2 (Inr b)" -lemma pred_sum_inject[code, simp]: +lemma pred_sum_inject [code, simp]: "pred_sum P1 P2 (Inl a) \ P1 a" "pred_sum P1 P2 (Inr b) \ P2 b" by (simp add: pred_sum.simps)+