diff -r 4ec8e654112f -r 2865a6618cba src/HOL/Nat.thy --- a/src/HOL/Nat.thy Thu Jun 26 17:25:29 2025 +0200 +++ b/src/HOL/Nat.thy Thu Jun 26 17:25:29 2025 +0200 @@ -215,7 +215,7 @@ primrec plus_nat where - add_0: "0 + n = (n::nat)" + add_0 [code]: "0 + n = (n::nat)" | add_Suc: "Suc m + n = Suc (m + n)" lemma add_0_right [simp]: "m + 0 = m" @@ -225,8 +225,6 @@ lemma add_Suc_right [simp]: "m + Suc n = Suc (m + n)" by (induct m) simp_all -declare add_0 [code] - lemma add_Suc_shift [code]: "Suc m + n = m + Suc n" by simp @@ -1501,8 +1499,8 @@ where funpow_code_def [code_abbrev]: "funpow = compow" lemma [code]: + "funpow 0 f = id" "funpow (Suc n) f = f \ funpow n f" - "funpow 0 f = id" by (simp_all add: funpow_code_def) end