diff -r a08e916f4946 -r 28b5eb4a867f src/HOL/Algebra/Coset.thy --- a/src/HOL/Algebra/Coset.thy Wed May 19 11:29:47 2004 +0200 +++ b/src/HOL/Algebra/Coset.thy Wed May 19 11:30:18 2004 +0200 @@ -502,8 +502,7 @@ lemma (in group) inv_FactGroup: "N <| G ==> X \ carrier (G Mod N) ==> inv\<^bsub>G Mod N\<^esub> X = set_inv G X" apply (rule group.inv_equality [OF factorgroup_is_group]) -apply (simp_all add: FactGroup_def setinv_closed - setrcos_inv_mult_group_eq group.intro [OF prems]) +apply (simp_all add: FactGroup_def setinv_closed setrcos_inv_mult_group_eq) done text{*The coset map is a homomorphism from @{term G} to the quotient group @@ -511,7 +510,6 @@ lemma (in group) r_coset_hom_Mod: assumes N: "N <| G" shows "(r_coset G N) \ hom G (G Mod N)" -by (simp add: FactGroup_def rcosets_def Pi_def hom_def - rcos_sum group.intro prems) +by (simp add: FactGroup_def rcosets_def Pi_def hom_def rcos_sum N) end