diff -r 35807a5d8dc2 -r 2a1953f0d20d src/HOL/ex/ReflectionEx.thy --- a/src/HOL/ex/ReflectionEx.thy Sat Mar 24 16:27:04 2012 +0100 +++ b/src/HOL/ex/ReflectionEx.thy Sun Mar 25 20:15:39 2012 +0200 @@ -143,7 +143,7 @@ oops text{* Hmmm let's specialize @{text Inum_C} with numerals.*} -lemma Inum_number: "Inum (C (number_of t)) vs = number_of t" by simp +lemma Inum_number: "Inum (C (numeral t)) vs = numeral t" by simp lemmas Inum_eqs = Inum_Var Inum_Add Inum_Mul Inum_CN Inum_number text{* Second attempt *} @@ -155,7 +155,7 @@ lemma "1 * (2* x + (y::nat) + 0 + 1) \ 0" apply (reify Inum_eqs ("1 * (2*x + (y::nat) + 0 + 1)")) oops - text{* Oh!! 0 is not a variable \dots\ Oh! 0 is not a @{text "number_of"} \dots\ thing. The same for 1. So let's add those equations too *} + text{* Oh!! 0 is not a variable \dots\ Oh! 0 is not a @{text "numeral"} \dots\ thing. The same for 1. So let's add those equations too *} lemma Inum_01: "Inum (C 0) vs = 0" "Inum (C 1) vs = 1" "Inum (C(Suc n)) vs = Suc n" by simp+ @@ -312,9 +312,9 @@ by simp lemma Irint_C1: "Irint (IC 1) vs = 1" by simp -lemma Irint_Cnumberof: "Irint (IC (number_of x)) vs = number_of x" +lemma Irint_Cnumeral: "Irint (IC (numeral x)) vs = numeral x" by simp -lemmas Irint_simps = Irint_Var Irint_Neg Irint_Add Irint_Sub Irint_Mult Irint_C0 Irint_C1 Irint_Cnumberof +lemmas Irint_simps = Irint_Var Irint_Neg Irint_Add Irint_Sub Irint_Mult Irint_C0 Irint_C1 Irint_Cnumeral lemma "(3::int) * x + y*y - 9 + (- z) = 0" apply (reify Irint_simps ("(3::int) * x + y*y - 9 + (- z)")) oops @@ -348,10 +348,10 @@ by simp lemma Irnat_C1: "Irnat (NC 1) is ls vs = 1" by simp -lemma Irnat_Cnumberof: "Irnat (NC (number_of x)) is ls vs = number_of x" +lemma Irnat_Cnumeral: "Irnat (NC (numeral x)) is ls vs = numeral x" by simp lemmas Irnat_simps = Irnat_Suc Irnat_Var Irnat_Neg Irnat_Add Irnat_Sub Irnat_Mult Irnat_lgth - Irnat_C0 Irnat_C1 Irnat_Cnumberof + Irnat_C0 Irnat_C1 Irnat_Cnumeral lemma "(Suc n) * length (([(3::int) * x + y*y - 9 + (- z)] @ []) @ xs) = length xs" apply (reify Irnat_simps Irlist.simps Irint_simps ("(Suc n) *length (([(3::int) * x + y*y - 9 + (- z)] @ []) @ xs)")) oops