diff -r 7d59af98af29 -r 2a4c8a2a3f8e src/HOL/Analysis/Cauchy_Integral_Theorem.thy --- a/src/HOL/Analysis/Cauchy_Integral_Theorem.thy Wed Dec 26 20:57:23 2018 +0100 +++ b/src/HOL/Analysis/Cauchy_Integral_Theorem.thy Thu Dec 27 19:48:28 2018 +0100 @@ -941,7 +941,7 @@ case True then show ?thesis by (simp add: assms contour_integral_unique has_contour_integral_integral has_contour_integral_reversepath) next - case False then have "~ f contour_integrable_on (reversepath g)" + case False then have "\ f contour_integrable_on (reversepath g)" by (simp add: assms contour_integrable_reversepath_eq) with False show ?thesis by (simp add: not_integrable_contour_integral) qed @@ -5518,7 +5518,7 @@ and ul_f: "uniform_limit (path_image \) f l F" and noleB: "\t. t \ {0..1} \ norm (vector_derivative \ (at t)) \ B" and \: "valid_path \" - and [simp]: "~ (trivial_limit F)" + and [simp]: "\ trivial_limit F" shows "l contour_integrable_on \" "((\n. contour_integral \ (f n)) \ contour_integral \ l) F" proof - have "0 \ B" by (meson noleB [of 0] atLeastAtMost_iff norm_ge_zero order_refl order_trans zero_le_one) @@ -5586,7 +5586,7 @@ corollary%unimportant contour_integral_uniform_limit_circlepath: assumes "\\<^sub>F n::'a in F. (f n) contour_integrable_on (circlepath z r)" and "uniform_limit (sphere z r) f l F" - and "~ (trivial_limit F)" "0 < r" + and "\ trivial_limit F" "0 < r" shows "l contour_integrable_on (circlepath z r)" "((\n. contour_integral (circlepath z r) (f n)) \ contour_integral (circlepath z r) l) F" using assms by (auto simp: vector_derivative_circlepath norm_mult intro!: contour_integral_uniform_limit) @@ -6550,7 +6550,7 @@ lemma holomorphic_uniform_limit: assumes cont: "eventually (\n. continuous_on (cball z r) (f n) \ (f n) holomorphic_on ball z r) F" and ulim: "uniform_limit (cball z r) f g F" - and F: "~ trivial_limit F" + and F: "\ trivial_limit F" obtains "continuous_on (cball z r) g" "g holomorphic_on ball z r" proof (cases r "0::real" rule: linorder_cases) case less then show ?thesis by (force simp: ball_empty less_imp_le continuous_on_def holomorphic_on_def intro: that) @@ -6620,7 +6620,7 @@ assumes cont: "eventually (\n. continuous_on (cball z r) (f n) \ (\w \ ball z r. ((f n) has_field_derivative (f' n w)) (at w))) F" and ulim: "uniform_limit (cball z r) f g F" - and F: "~ trivial_limit F" and "0 < r" + and F: "\ trivial_limit F" and "0 < r" obtains g' where "continuous_on (cball z r) g" "\w. w \ ball z r \ (g has_field_derivative (g' w)) (at w) \ ((\n. f' n w) \ g' w) F"