diff -r 7d59af98af29 -r 2a4c8a2a3f8e src/HOL/Analysis/Starlike.thy --- a/src/HOL/Analysis/Starlike.thy Wed Dec 26 20:57:23 2018 +0100 +++ b/src/HOL/Analysis/Starlike.thy Thu Dec 27 19:48:28 2018 +0100 @@ -3726,7 +3726,7 @@ lemma affine_independent_convex_affine_hull: fixes s :: "'a::euclidean_space set" - assumes "~affine_dependent s" "t \ s" + assumes "\ affine_dependent s" "t \ s" shows "convex hull t = affine hull t \ convex hull s" proof - have fin: "finite s" "finite t" using assms aff_independent_finite finite_subset by auto @@ -3764,7 +3764,7 @@ lemma affine_independent_span_eq: fixes s :: "'a::euclidean_space set" - assumes "~affine_dependent s" "card s = Suc (DIM ('a))" + assumes "\ affine_dependent s" "card s = Suc (DIM ('a))" shows "affine hull s = UNIV" proof (cases "s = {}") case True then show ?thesis @@ -3789,7 +3789,7 @@ lemma affine_independent_span_gt: fixes s :: "'a::euclidean_space set" - assumes ind: "~ affine_dependent s" and dim: "DIM ('a) < card s" + assumes ind: "\ affine_dependent s" and dim: "DIM ('a) < card s" shows "affine hull s = UNIV" apply (rule affine_independent_span_eq [OF ind]) apply (rule antisym) @@ -3831,7 +3831,7 @@ lemma rel_interior_convex_hull_explicit: fixes s :: "'a::euclidean_space set" - assumes "~ affine_dependent s" + assumes "\ affine_dependent s" shows "rel_interior(convex hull s) = {y. \u. (\x \ s. 0 < u x) \ sum u s = 1 \ sum (\x. u x *\<^sub>R x) s = y}" (is "?lhs = ?rhs") @@ -3904,18 +3904,18 @@ lemma interior_convex_hull_explicit_minimal: fixes s :: "'a::euclidean_space set" shows - "~ affine_dependent s + "\ affine_dependent s ==> interior(convex hull s) = (if card(s) \ DIM('a) then {} else {y. \u. (\x \ s. 0 < u x) \ sum u s = 1 \ (\x\s. u x *\<^sub>R x) = y})" apply (simp add: aff_independent_finite empty_interior_convex_hull, clarify) apply (rule trans [of _ "rel_interior(convex hull s)"]) - apply (simp add: affine_hull_convex_hull affine_independent_span_gt rel_interior_interior) + apply (simp add: affine_independent_span_gt rel_interior_interior) by (simp add: rel_interior_convex_hull_explicit) lemma interior_convex_hull_explicit: fixes s :: "'a::euclidean_space set" - assumes "~ affine_dependent s" + assumes "\ affine_dependent s" shows "interior(convex hull s) = (if card(s) \ DIM('a) then {} @@ -4082,7 +4082,7 @@ lemma rel_frontier_convex_hull_explicit: fixes s :: "'a::euclidean_space set" - assumes "~ affine_dependent s" + assumes "\ affine_dependent s" shows "rel_frontier(convex hull s) = {y. \u. (\x \ s. 0 \ u x) \ (\x \ s. u x = 0) \ sum u s = 1 \ sum (\x. u x *\<^sub>R x) s = y}" proof - @@ -4106,7 +4106,7 @@ lemma frontier_convex_hull_explicit: fixes s :: "'a::euclidean_space set" - assumes "~ affine_dependent s" + assumes "\ affine_dependent s" shows "frontier(convex hull s) = {y. \u. (\x \ s. 0 \ u x) \ (DIM ('a) < card s \ (\x \ s. u x = 0)) \ sum u s = 1 \ sum (\x. u x *\<^sub>R x) s = y}" @@ -4133,7 +4133,7 @@ lemma rel_frontier_convex_hull_cases: fixes s :: "'a::euclidean_space set" - assumes "~ affine_dependent s" + assumes "\ affine_dependent s" shows "rel_frontier(convex hull s) = \{convex hull (s - {x}) |x. x \ s}" proof - have fs: "finite s" @@ -4164,7 +4164,7 @@ lemma frontier_convex_hull_eq_rel_frontier: fixes s :: "'a::euclidean_space set" - assumes "~ affine_dependent s" + assumes "\ affine_dependent s" shows "frontier(convex hull s) = (if card s \ DIM ('a) then convex hull s else rel_frontier(convex hull s))" using assms @@ -4174,7 +4174,7 @@ lemma frontier_convex_hull_cases: fixes s :: "'a::euclidean_space set" - assumes "~ affine_dependent s" + assumes "\ affine_dependent s" shows "frontier(convex hull s) = (if card s \ DIM ('a) then convex hull s else \{convex hull (s - {x}) |x. x \ s})" by (simp add: assms frontier_convex_hull_eq_rel_frontier rel_frontier_convex_hull_cases) @@ -4668,7 +4668,7 @@ lemma interior_convex_hull_3_minimal: fixes a :: "'a::euclidean_space" - shows "\~ collinear{a,b,c}; DIM('a) = 2\ + shows "\\ collinear{a,b,c}; DIM('a) = 2\ \ interior(convex hull {a,b,c}) = {v. \x y z. 0 < x \ 0 < y \ 0 < z \ x + y + z = 1 \ x *\<^sub>R a + y *\<^sub>R b + z *\<^sub>R c = v}" @@ -5862,7 +5862,7 @@ lemma affine_dependent_choose: fixes a :: "'a :: euclidean_space" - assumes "~(affine_dependent S)" + assumes "\(affine_dependent S)" shows "affine_dependent(insert a S) \ a \ S \ a \ affine hull S" (is "?lhs = ?rhs") proof safe @@ -5887,7 +5887,7 @@ lemma affine_independent_insert: fixes a :: "'a :: euclidean_space" - shows "\~(affine_dependent S); a \ affine hull S\ \ ~(affine_dependent(insert a S))" + shows "\\ affine_dependent S; a \ affine hull S\ \ \ affine_dependent(insert a S)" by (simp add: affine_dependent_choose) lemma subspace_bounded_eq_trivial: @@ -6158,7 +6158,7 @@ lemma fixes s :: "'a::euclidean_space set" - assumes "~ (affine_dependent(s \ t))" + assumes "\ affine_dependent(s \ t)" shows convex_hull_Int_subset: "convex hull s \ convex hull t \ convex hull (s \ t)" (is ?C) and affine_hull_Int_subset: "affine hull s \ affine hull t \ affine hull (s \ t)" (is ?A) proof - @@ -6201,7 +6201,7 @@ proposition affine_hull_Int: fixes s :: "'a::euclidean_space set" - assumes "~ (affine_dependent(s \ t))" + assumes "\ affine_dependent(s \ t)" shows "affine hull (s \ t) = affine hull s \ affine hull t" apply (rule subset_antisym) apply (simp add: hull_mono) @@ -6209,7 +6209,7 @@ proposition convex_hull_Int: fixes s :: "'a::euclidean_space set" - assumes "~ (affine_dependent(s \ t))" + assumes "\ affine_dependent(s \ t)" shows "convex hull (s \ t) = convex hull s \ convex hull t" apply (rule subset_antisym) apply (simp add: hull_mono) @@ -6217,7 +6217,7 @@ proposition fixes s :: "'a::euclidean_space set set" - assumes "~ (affine_dependent (\s))" + assumes "\ affine_dependent (\s)" shows affine_hull_Inter: "affine hull (\s) = (\t\s. affine hull t)" (is "?A") and convex_hull_Inter: "convex hull (\s) = (\t\s. convex hull t)" (is "?C") proof - @@ -6247,7 +6247,7 @@ proposition in_convex_hull_exchange_unique: fixes S :: "'a::euclidean_space set" - assumes naff: "~ affine_dependent S" and a: "a \ convex hull S" + assumes naff: "\ affine_dependent S" and a: "a \ convex hull S" and S: "T \ S" "T' \ S" and x: "x \ convex hull (insert a T)" and x': "x \ convex hull (insert a T')" @@ -6395,7 +6395,7 @@ corollary convex_hull_exchange_Int: fixes a :: "'a::euclidean_space" - assumes "~ affine_dependent S" "a \ convex hull S" "T \ S" "T' \ S" + assumes "\ affine_dependent S" "a \ convex hull S" "T \ S" "T' \ S" shows "(convex hull (insert a T)) \ (convex hull (insert a T')) = convex hull (insert a (T \ T'))" apply (rule subset_antisym) @@ -6404,7 +6404,7 @@ lemma Int_closed_segment: fixes b :: "'a::euclidean_space" - assumes "b \ closed_segment a c \ ~collinear{a,b,c}" + assumes "b \ closed_segment a c \ \ collinear{a,b,c}" shows "closed_segment a b \ closed_segment b c = {b}" proof (cases "c = a") case True @@ -7283,7 +7283,7 @@ fixes S :: "'a :: euclidean_space set" assumes "affine S" and "S \ {x. a \ x \ b} \ {}" - and "~ (S \ {x. a \ x \ b})" + and "\ (S \ {x. a \ x \ b})" obtains a' b' where "a' \ 0" "S \ {x. a' \ x \ b'} = S \ {x. a \ x \ b}" "S \ {x. a' \ x = b'} = S \ {x. a \ x = b}" @@ -7669,7 +7669,7 @@ assumes opS: "openin (subtopology euclidean (S \ T)) S" and opT: "openin (subtopology euclidean (S \ T)) T" and contf: "continuous_on S f" and contg: "continuous_on T g" - and fg: "\x. x \ S \ ~P x \ x \ T \ P x \ f x = g x" + and fg: "\x. x \ S \ \P x \ x \ T \ P x \ f x = g x" shows "continuous_on (S \ T) (\x. if P x then f x else g x)" proof - have "\x. x \ S \ (if P x then f x else g x) = f x" "\x. x \ T \ (if P x then f x else g x) = g x"