diff -r bb1f2a03b370 -r 2aab65a687ec src/HOL/GCD.thy --- a/src/HOL/GCD.thy Sat Apr 05 08:49:53 2025 +0200 +++ b/src/HOL/GCD.thy Sat Apr 05 23:51:52 2025 +0200 @@ -2583,13 +2583,14 @@ qed qed -lemma Gcd_remove0_nat: "finite M \ Gcd M = Gcd (M - {0})" +lemma Gcd_remove0_nat: "Gcd M = Gcd (M - {0})" for M :: "nat set" -proof (induct pred: finite) - case (insert x M) - then show ?case - by (simp add: insert_Diff_if) -qed auto +proof- + have "(\ m \ M. b dvd m) \ (\ m \ (M - {0}). b dvd m)" for b + by blast+ + thus ?thesis + unfolding Gcd_Lcm by presburger +qed lemma Lcm_in_lcm_closed_set_nat: fixes M :: "nat set"