diff -r abccf1b7ea4b -r 2c10c35dd4be src/HOL/Multivariate_Analysis/Cartesian_Euclidean_Space.thy --- a/src/HOL/Multivariate_Analysis/Cartesian_Euclidean_Space.thy Wed Aug 10 15:56:48 2011 -0700 +++ b/src/HOL/Multivariate_Analysis/Cartesian_Euclidean_Space.thy Wed Aug 10 16:35:50 2011 -0700 @@ -1526,9 +1526,9 @@ lemma has_derivative_vmul_component_cart: fixes c::"real^'a \ real^'b" and v::"real^'c" assumes "(c has_derivative c') net" - shows "((\x. c(x)$k *\<^sub>R v) has_derivative (\x. (c' x)$k *\<^sub>R v)) net" - using has_derivative_vmul_component[OF assms] - unfolding nth_conv_component . + shows "((\x. c(x)$k *\<^sub>R v) has_derivative (\x. (c' x)$k *\<^sub>R v)) net" + unfolding nth_conv_component + by (intro has_derivative_intros assms) lemma differentiable_at_imp_differentiable_on: "(\x\(s::(real^'n) set). f differentiable at x) \ f differentiable_on s" unfolding differentiable_on_def by(auto intro!: differentiable_at_withinI) @@ -1641,8 +1641,6 @@ lemma vec1_component[simp]: "(vec1 x)$1 = x" by (simp_all add: vec_eq_iff) -declare vec1_dest_vec1(1) [simp] - lemma forall_vec1: "(\x. P x) \ (\x. P (vec1 x))" by (metis vec1_dest_vec1(1))