diff -r e1309df633c6 -r 2c227493ea56 src/HOL/RealVector.thy --- a/src/HOL/RealVector.thy Tue Apr 28 15:50:30 2009 +0200 +++ b/src/HOL/RealVector.thy Tue Apr 28 15:50:30 2009 +0200 @@ -259,7 +259,7 @@ by (simp add: divide_inverse) lemma of_real_power [simp]: - "of_real (x ^ n) = (of_real x :: 'a::{real_algebra_1,recpower}) ^ n" + "of_real (x ^ n) = (of_real x :: 'a::{real_algebra_1}) ^ n" by (induct n) simp_all lemma of_real_eq_iff [simp]: "(of_real x = of_real y) = (x = y)" @@ -389,7 +389,7 @@ done lemma Reals_power [simp]: - fixes a :: "'a::{real_algebra_1,recpower}" + fixes a :: "'a::{real_algebra_1}" shows "a \ Reals \ a ^ n \ Reals" apply (auto simp add: Reals_def) apply (rule range_eqI) @@ -613,7 +613,7 @@ by (simp add: divide_inverse norm_mult norm_inverse) lemma norm_power_ineq: - fixes x :: "'a::{real_normed_algebra_1,recpower}" + fixes x :: "'a::{real_normed_algebra_1}" shows "norm (x ^ n) \ norm x ^ n" proof (induct n) case 0 show "norm (x ^ 0) \ norm x ^ 0" by simp @@ -628,7 +628,7 @@ qed lemma norm_power: - fixes x :: "'a::{real_normed_div_algebra,recpower}" + fixes x :: "'a::{real_normed_div_algebra}" shows "norm (x ^ n) = norm x ^ n" by (induct n) (simp_all add: norm_mult)